欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.如圖,在△ABD中,AB=AD,將△ABD沿BD翻折,使點A翻折到點C.E是BD上一點,且BE>DE,連結(jié)CE并延長交AD于F,連結(jié)AE.
(1)依題意補全圖形;
(2)判斷∠DFC與∠BAE的大小關系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點G,連結(jié)EG,求EA+EG的最小值.

分析 (1)將△ABD沿BD翻折,使點A翻折到點C.E是BD上一點,且BE>DE,連結(jié)CE并延長交AD于F,連結(jié)AE,據(jù)此畫圖即可;
(2)根據(jù)△ABE≌△CBE(SAS),可得∠BAE=∠BCE.再根據(jù)AD∥BC,可得∠DFC=∠BCE,進而得出∠DFC=∠BAE;
(3)連接CG,AC,根據(jù)EC+EG≥CG可知,CG長就是EA+EG的最小值,根據(jù)△ACD為邊長為2的等邊三角形,G為AD的中點,運用勾股定理即可得出CG=$\sqrt{3}$,進而得到EA+EG的最小值.

解答 解:(1)如圖所示:

(2)判斷:∠DFC=∠BAE.
證明:∵將△ABD沿BD翻折,使點A翻折到點C.
∴BC=BA=DA=CD.
∴四邊形ABCD為菱形.
∴∠ABD=∠CBD,AD∥BC.
又∵BE=BE,
∴△ABE≌△CBE(SAS).
∴∠BAE=∠BCE.
∵AD∥BC,
∴∠DFC=∠BCE.
∴∠DFC=∠BAE.
(3)如圖,連接CG,AC.

由軸對稱的性質(zhì)可知,EA=EC,
∴EA+EG=EC+EG,
根據(jù)EC+EG≥CG可知,CG長就是EA+EG的最小值.
∵∠BAD=120°,四邊形ABCD為菱形,
∴∠CAD=60°.
∴△ACD為邊長為2的等邊三角形.
又∵G為AD的中點,
∴DG=1,
∴Rt△CDG中,由勾股定理可得CG=$\sqrt{3}$,
∴EA+EG的最小值為$\sqrt{3}$.

點評 本題主要考查了折疊問題,菱形的性質(zhì)以及勾股定理的運用,解題時注意:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.凡是涉及最短距離的問題,一般要考慮線段的性質(zhì)定理,結(jié)合軸對稱變換來解決,多數(shù)情況要作點關于某直線的對稱點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

19.對于方程$\left\{\begin{array}{l}{x+2y=2a}\\{2x-y=3a}\end{array}\right.$,則$\frac{x}{y}$=8.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

20.下列各式,分解因式正確的是( 。
A.a2-2ab+b2=(a-b)2B.xy+xz+x=x(y+z)C.x2+x3=x3($\frac{1}{x}$+1)D.a2+b2=(a+b)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.如圖,將正方形ABCD逆時針旋轉(zhuǎn)得到正方形AB′C′D′,則旋轉(zhuǎn)角度為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.若點P是△ABC的∠B,∠C兩內(nèi)角平分線的交點,∠BPC=130°,則∠A的度數(shù)是80°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.下列命題中,真命題是( 。
A.4的平方根是2B.同位角相等,兩直線平行
C.同旁內(nèi)角互補D.0沒有立方根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.在正方形ABCO中,A(0,4),B(4,4),C(4,0),O(0,0),E為AO的中點,F(xiàn)為邊CO上的動點,分別連接EF,F(xiàn)B,BE得到△EFB,并將其沿FB折疊得到△E′FB.
(1)當點F與點C重合時,問:四邊形BEFE′是什么特殊四邊形?說明理由
(2)當點F為CO的中點時,求點E′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.某運動鞋生產(chǎn)廠家在街頭隨機調(diào)查男生的鞋號,并得到一組數(shù)據(jù),他們最關注這數(shù)據(jù)中的( 。
A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.若x、y滿足方程組$\left\{\begin{array}{l}{x+2y=5}\\{2x+y=3}\end{array}\right.$,則x-y的值等于( 。
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習冊答案