(1)順次連接任意四邊形各邊中點構(gòu)成的四邊形是______;
(2)順次連接對角線相等的四邊形的各邊中點,構(gòu)成的四邊形是______;
(3)順次連接對角線互相垂直的四邊形的各邊中點構(gòu)成的四邊形是______.
解:(1)如圖所示,任意四邊形ABCD中,E、F、G、H分別為各邊的中點,求四邊形EFGH的形狀.
連接AC,
∵E、F、G、H分別為各邊的中點,
∴HG、EF分別為△ACD與△ABC的中位線,
∴HG∥AC∥EF,HG=EF=

AC,
∴四邊形EFGH是平行四邊形;

(2)如圖所示,四邊形ABCD的對角線AC=BD,E、F、G、H分別為各邊的中點,求四邊形EFGH的形狀.
連接AC、BD,
∵E、F、G、H分別為各邊的中點,
∴EH、GF分別為△ABD與△BCD的中位線,
∴EH∥BD∥GF,EH=GF=

BD,
∴四邊形EFGH是平行四邊形,
同理可得,HG=EF=

AC,
∵AC=BD,
∴EH=GF,
∴四邊形EFGH是菱形;

(3)如圖所示,四邊形ABCD的對角線AC⊥BD,E、F、G、H分別為各邊的中點,求四邊形EFGH的形狀.
解:連接AC、BD,
∵E、F、G、H分別為各邊的中點,
∴EH、GF分別為△ABD與△BCD的中位線,
∴EH∥BD∥GF,EH=GF=

BD,
∴四邊形EFGH是平行四邊形,
同理可得,HG∥AC∥EF,
∵AC⊥BD,
∴HG⊥BD⊥EH,
∴四邊形EFGH是矩形.

故答案分別為平行四邊形、菱形、矩形.
分析:(1)連接任意四邊形的中點,如圖,連接AC,根據(jù)三角形的中位線定理,可以證得HG=FE=

,并且HG∥EF,所以利用平行四邊形的判定定理可知,該中點四邊形是平行四邊形.
(2)在(1)的基礎(chǔ)上,易證平行四邊形GHBF的一組鄰邊相等,所以根據(jù)菱形的定義可知該中點四邊形是菱形.
(3)在(1)的基礎(chǔ)上,易證平行四邊形GHBF中有一個角是直角,所以根據(jù)矩形的定義可知該中點四邊形是矩形.
點評:本題考查的是三角形中位線定理,即三角形的中位線平行于底邊且等于底邊的一半.解答此題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合解答.