如圖,已知拋物線y=ax2+bx+c經過A(﹣3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.
![]()
考點:
二次函數綜合題.
專題:
綜合題.
分析:
(1)根據函數圖象經過的三點,用待定系數法確定二次函數的解析式即可;
(2)根據BC是定值,得到當PB+PC最小時,△PBC的周長最小,根據點的坐標求得相應線段的長即可;
(3)設點E的橫坐標為m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的長,從而表示出S于m的函數關系,然后求二次函數的最值即可.
解答:
解:(1)由題意可知:![]()
解得:![]()
∴拋物線的解析式為:y=﹣x2﹣2x+3;
(2)∵△PBC的周長為:PB+PC+BC
∵BC是定值,
∴當PB+PC最小時,△PBC的周長最小,
∵點A、點B關于對稱軸I對稱,
∴連接AC交l于點P,即點P為所求的點
∵AP=BP
∴△PBC的周長最小是:PB+PC+BC=AC+BC
∵A(﹣3,0),B(1,0),C(0,3),
∴AC=3
,BC=
;
(3)①∵拋物線y=﹣x2﹣2x+3頂點D的坐標為(﹣1,4)
∵A(﹣3,0)
∴直線AD的解析式為y=2x+6
∵點E的橫坐標為m,
∴E(m,2m+6),F(m,﹣m2﹣2m+3)
∴EF=﹣m2﹣2m+3﹣(2m+6)
=﹣m2﹣4m﹣3
∴S=S△DEF+S△AEF
=EF•GH+EF•AC
=EF•AH
=(﹣m2﹣4m﹣3)×2
=﹣m2﹣4m﹣3;
②S=﹣m2﹣4m﹣3
=﹣(m+2)2+1;
∴當m=﹣2時,S最大,最大值為1
此時點E的坐標為(﹣2,2).
![]()
點評:
此題主要考查了待定系數法求二次函數解析式以及二次函數的最值,根據點的坐標表示出線段的長是表示出三角形的面積的基礎.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com