分析 取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BD=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.
解答
解:如圖,取BC的中點(diǎn)G,連接MG,
∵旋轉(zhuǎn)角為60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等邊△ABC的對稱軸,
∴HB=$\frac{1}{2}$AB,
∴HB=BG,
又∵M(jìn)B旋轉(zhuǎn)到BN,
∴BM=BN,
在△MBG和△NBH中,
$\left\{\begin{array}{l}{BG=BH}\\{∠MBG=∠NBH}\\{MB=NB}\end{array}\right.$,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,
此時∵∠BCH=$\frac{1}{2}$×60°=30°,CG=$\frac{1}{2}$AB=$\frac{1}{2}$×5=2.5,
∴MG=$\frac{1}{2}$CG=$\frac{1}{2}$×2.5=1.25,
∴HN=1.25,
故答案為:1.25.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com