【題目】如圖,在△ABC中,點(diǎn)D是線段AB的中點(diǎn),DC⊥BC,作∠EAB=∠B,DE∥BC,連接CE.若
,設(shè)△BCD的面積為S,則用S表示△ACE的面積正確的是( )
![]()
A.
B.3S
C.4SD.![]()
【答案】C
【解析】
延長AE,BC交于點(diǎn)F,易得AE=DE,由DE∥BC,D為AB的中點(diǎn),可知DE為中位線,所以BF=2DE,設(shè)BC=2x,AE=DE=5x,則BF=10x,CF=BF-BC=8x,在△ABF和△ACF中,分別利用同高的兩個(gè)三角形面積之比等于底邊之比,可推出面積關(guān)系.
如圖所示,延長AE,BC交于點(diǎn)F
![]()
∵DE∥BC,∴∠ADE=∠B,
又∵∠EAB=∠B,∴∠ADE=∠EAB,∴AE=DE
∵D為AB的中點(diǎn),DE∥BF,∴DE為△ABF的中位線,
∴BF=2DE,
設(shè)BC=2x,AE=DE=5x,則BF=10x,CF=BF-BC=8x,
在△ABC中,∵D是AB的中點(diǎn),∴S△ACD=S△BCD=S
∴S△ABC=2S,
在△ABF中,![]()
∴![]()
在△ACF中,E為AF的中點(diǎn),
∴![]()
故選C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時(shí)間(s)滿足二次函數(shù)關(guān)系,t與h的幾組對應(yīng)值如下表所示:
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);
(2)求小球飛行3s時(shí)的高度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)的計(jì)算過程中去發(fā)現(xiàn)規(guī)律.
(1)5>2,而
<
,規(guī)律:若a>b>0,那么
與
的大小關(guān)系是:
.
(2)對于很小的數(shù)0.1、0.001、0.00001,它們的倒數(shù)
= ;
= ;
= .規(guī)律:當(dāng)正實(shí)數(shù)x無限小(無限接近于0),那么它的倒數(shù)
.
(3)填空:若實(shí)數(shù)x的范圍是0<x<2,寫出
的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在
點(diǎn)上正方
的
處發(fā)出一球,羽毛球飛行的高度
與水平距離
之間滿足函數(shù)表達(dá)式
.已知點(diǎn)
與球網(wǎng)的水平距離為
,球網(wǎng)的高度為
.
![]()
(1)當(dāng)
時(shí),①求
的值.②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點(diǎn)
的水平距離為
,離地面的高度為
的
處時(shí),乙扣球成功,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(1,4)和點(diǎn)B(5,1)在平面直角坐標(biāo)系中的位置如圖所示:
(1)點(diǎn)A1、B1分別為點(diǎn)A、B關(guān)于y軸的對稱點(diǎn),請畫出四邊形AA1B1B,并寫出A1、B1的坐標(biāo);
(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個(gè)頂點(diǎn)的線段,將四邊形AA1B1B分成兩個(gè)圖形,并且使分得的圖形中的一個(gè)是軸對稱圖形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點(diǎn)D在BC上,AB與CE相交于點(diǎn)F
(1) 如圖1,直接寫出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點(diǎn)G,在BC的延長線上截取CH=DB,射線HG交AB于K,求證:HK=BK
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,點(diǎn)D、E、F是⊙O上三個(gè)點(diǎn),EF//AB,若EF=2
,則∠EDC的度數(shù)為__________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com