欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C。
(1)求A、B、C三點的坐標;
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG垂直x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標;否則,請說明理由。
解:(1)令y=0,得x2-1=0,
解得x=士1,
令x=0,得y= -1,
∴A(1,0),B(-1,0),C(0,-1);
(2)∵OA=OB=OC=1,
∴∠BAC=∠ACO=∠BC0=45°,
∵AP∥CB,
∴∠PAB=45°,
過點P作PE⊥x軸于E,則△APE為等腰直角三角形,
令OE =a,則PE=a+1,
∴P(-a,a+1),
∵點P在拋物線y=x2-1上,
∴a+1=a2-1,
解得a1=2,a2=-1(不合題意,舍去),
∴PE=3,
∴四邊形ACBP的面積S=AB·OC+AB·PE =×2×1+×2×3=4;
(3)假設存在,
∵∠PAB=∠BAC=45°,
∴PA⊥AC,
∵MG垂直x軸于點G,
∴∠MGA=∠PAC=90°,
在Rt△AOC中,OA=OC=1,
∴AC=
在Rt△PAE中,AE=PE=3,
∴AP=3
設M點的橫坐標為m,則M(m,m2-1),
①點M在y軸右側時,則m>1,
(i)當△AMG∽△PCA時,有,
∵AG=m-1,MG=m2-1,

解得m1=1(舍去),m2=-(舍去),
( ii)當△MAC∽△PCA時有,

解得:m1=1(舍去),m2=2,
∴M(2,3),
②點M在y軸左側時,則m<-1,
(i)當△AMG∽△PCA時有,
∵AG=-m+1,MG=m2-1,

解得m1=1(舍去),m2=-,
∴M(-,),
( ii) 當△MAG∽△PCA時有,

解得:m1=1(舍去),m2=-4,
∴M(-4,15),
∴存在點M,使以A、M、G三點為頂點的三角形與△PCA相似,
M點的坐標為(2,3),(-,)或(-4,15)。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標;否則,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點,C為拋物線的頂點,過點A作AP∥精英家教網BC交拋物線于點P.
(1)求A,B,C三點坐標;
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點M,過點M作ME⊥x軸于點E,使A,M,E三點為頂點的三角形與△PCA相似?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=ax2+bx+c(a≠0)經過原點和點(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),拋物線的對稱軸x=2交x軸于點E.
(1)求交點A的坐標及拋物線的函數關系式;
(2)在平面直角坐標系xOy中是否存在點P,使點P與A,B,C三點構成一個平行四邊形?若存在,請直接寫出點P坐標;若不存在,請說明理由;
(3)連接CB交拋物線對稱軸于點D,在拋物線上是否存在一點Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習冊答案