分析 (1)在直角△ADE中,利用勾股定理進(jìn)行解答;
(2)需要分類討論:AE為斜邊和AP為斜邊兩種情況下的直角三角形;
(3)假設(shè)存在.利用角平分線的性質(zhì),平行線的性質(zhì)以及等量代換推知:∠PEA=∠EAP,則PE=PA,由此列出關(guān)于t的方程,通過解方程求得相應(yīng)的t的值即可.
解答 解:(1)∵矩形ABCD中,AB=9,AD=4,
∴CD=AB=9,∠D=90°,
∴DE=9-6=3,
∴AE=$\sqrt{D{E}^{2}+A{D}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5;
(2)①若∠EPA=90°,t=6;
②若∠PEA=90°,(6-t)2+42+52=(9-t)2,
解得t=$\frac{2}{3}$.
綜上所述,當(dāng)t=6或t=$\frac{2}{3}$時(shí),△PAE為直角三角形;
(3)假設(shè)存在.
∵EA平分∠PED,
∴∠PEA=∠DEA.
∵CD∥AB,
∴∠DEA=∠EAP,
∴∠PEA=∠EAP,
∴PE=PA,
∴(6-t)2+42=(9-t)2,
解得t=$\frac{29}{6}$.
∴滿足條件的t存在,此時(shí)t=$\frac{29}{6}$.
點(diǎn)評(píng) 本題考查了四邊形綜合題,綜合勾股定理,直角三角形的性質(zhì),一元二次方程的應(yīng)用等知識(shí)點(diǎn),要注意分類討論,以防漏解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1cm,2cm,3cm,4cm | B. | 1cm,2cm,2cm,4cm | ||
| C. | 3cm,5cm,9cm,13cm | D. | 1cm,2cm,2cm,3cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com