欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長。

小萍同學(xué)靈活運用了軸對稱知識,將圖形進行翻折變換,巧妙地解答了此題。

(1)分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D、C點的對稱點分別為E、F,延長EB、FC相交于G點,求證:四邊形AEGF是正方形;

(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值。

 

【答案】

(1)由翻折變換可得∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°,AE=AD,AF=AD,再結(jié)合可得四邊形AEGF為矩形,再有AE=AF=AD,即可證得結(jié)論;(2)6

【解析】

試題分析:(1)由翻折變換可得∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°,AE=AD,AF=AD,再結(jié)合可得四邊形AEGF為矩形,再有AE=AF=AD,即可證得結(jié)論;    

(2)由AD=x,根據(jù)正方形的性質(zhì)可得AE=EG=GF=AF=x,即可得到BG=x-2,CG=x-3,BC=2+3=5,再根據(jù)勾股定理即可列方程求得結(jié)果.

在Rt△BGC中,

解得(不合題意,舍去)

∴AD=x=6.

(1)∵AD⊥BC,BD=2,DC=3,由翻折變換可知:

∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°.

AE=AD,AF=AD

又∵∠BAC=45°,則∠EAF=90°

∵∠E=∠F=∠EAF=90°

∴四邊形AEGF為矩形

又∵AE=AF=AD,則矩形AEGF為正方形;      

(2)∵AD=x,則AE=EG=GF=AF=x,又EB=2,CF=3

∴BG=x-2,CG=x-3,BC=2+3=5

在Rt△BGC中,

解得(不合題意,舍去)

∴AD=x=6.

考點:翻折變換,正方形的判定,勾股定理

點評:解答本題的關(guān)鍵是熟練掌握翻折變換的性質(zhì):翻折前后圖形的對應(yīng)邊或?qū)?yīng)角相等;有四個角是直角的四邊形是矩形,有一組鄰邊相等的矩形是正方形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,已知點D、E、F分別為邊BC,AD,CE的中點,且△ABC的面積是4,則△BEF的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC中,已知AB=AC,要使AD=AE,需要添加的一個條件是
BD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,△DEF是△ABC的內(nèi)接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,則用β、γ表示α的關(guān)系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,BD=DC,則∠ADB=
90°
90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案