欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2012•大連)如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點P、Q同時從點C出發(fā),以1cm/s的速度分別沿CA、CB勻速運動.當點Q到達點B時,點P、Q同時停止運動.過點P作AC的垂線l交AB于點R,連接PQ、RQ,并作△PQR關(guān)于直線l對稱的圖形,得到△PQ′R.設點Q的運動時間為t(s),△PQ′R與△PAR重疊部分的面積為S(cm2).
(1)t為何值時,點Q′恰好落在AB上?
(2)求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)S能否為
98
cm2?若能,求出此時的t值;若不能,說明理由.
分析:(1)如圖所示,連接QQ′,由題意得到三角形PQC為等腰直角三角形,可得出∠CPQ=45°,再由l與AC垂直,得到∠RPQ也為45°,進而由對稱性得出PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,由平行得到一對同位角相等,再由公共角相等,利用兩對對應角相等的兩三角形相似得到△BQQ′∽△BCA,由相似得比例,將各自的值代入列出關(guān)于t的方程,求出方程的解即可得到此時t的值;
(2)由(1)求出t的值,分兩種情況考慮:當0<t≤2.4時,過Q′作Q′D⊥l于D點,則Q′D=t,由RP與BC平行,利用兩直線平行得到兩對同位角相等,利用兩對對應角相等的兩三角形相似得到△RPA∽△BCA,由相似得比例表示出RP,利用三角形的面積公式表示出S關(guān)于t的關(guān)系式即可;當2.4<t≤6時,記PQ′與AB的交點為E,過E作ED⊥l于D,由對稱性得到由對稱可得:∠DPE=∠DEP=45°,可得出三角形DEP為等腰直角三角形,得到DE=DP,由△RDE∽△BCA,利用相似得比例,表示出DR,再由△RPA∽△BCA,由相似得比例,表示出RP,由RP=RD+DP=RD+DE,將表示出的DR及RP代入,表示出DE,利用三角形的面積公式即可表示出S與t的關(guān)系式;
(3)S能為
9
8
cm2,具體求法為:當0<t≤2.4時,令S=
9
8
,得出關(guān)于t的一元二次方程,求出方程的解得到t的值;當2.4<t≤6時,令S=
9
8
,得出關(guān)于t的一元二次方程,求出方程的解得到t的值,經(jīng)檢驗得到滿足題意t的值.
解答:解:(1)連接QQ′,

∵PC=QC,∠C=90°,
∴∠CPQ=45°,又l⊥AC,
∴∠RPQ=∠RPC-∠CPQ=90°-45°=45°,
由對稱可得PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,
∴∠BQQ′=∠BCA,又∠B=∠B,
∴△BQQ′∽△BCA,
BQ
QQ′
=
BC
CA
=
3
4
,即
6-t
2t
=
3
4
,
解得:t=2.4;

(2)當0<t≤2.4時,過Q′作Q′D⊥l于D點,則Q′D=t,

又∵RP∥BC,
∴△RPA∽△BCA,
RP
BC
=
AP
AC
,即
RP
6
=
8-t
8
,
∴RP=(8-t)•
3
4
=
24-3t
4

∴S=
1
2
RP•Q′D=
1
2
24-3t
4
•t=-
3
8
t2+3t;
當2.4<t≤6時,記PQ′與AB的交點為E,過E作ED⊥l于D,

由對稱可得:∠DPE=∠DEP=45°,
又∵∠PDE=90°,
∴△DEP為等腰直角三角形,
∴DP=DE,
∵△RDE∽△BCA,
DR
DE
=
BC
AC
=
6
8
=
3
4
,即DR=
3
4
DE,
∵△RPA∽△BCA,
RP
PA
=
BC
AC
,即
RP
8-t
=
6
8
,
∴RP=
3(8-t)
4
,
∴RP=RD+DP=DR+DE=DE+
3
4
DE=
3(8-t)
4
,即
7
4
DE=
3(8-t)
4
,
∴DE=
24-3t
7

∴S=
1
2
RP•DE=
1
2
3(8-t)
4
24-3t
7
=
9
56
t2-
18
7
t+
72
7
;

(3)S能為
9
8
cm2,理由為:
9
56
t2-
18
7
t+
72
7
=
9
8
(2.4<t≤6),
整理得:t2-16t+57=0,
解得:t=
16±
256-228
2
=8±
7
,
∴t1=8+
7
(舍去),t2=8-
7

若-
3
8
t2+3t=
9
8
(0<t≤2.4),
整理得:t2-8t+3=0,
解得:t=
8±2
13
2
=4±
13
,
∴t1=4+
13
(舍去),t2=4-
13

綜上,當S為
8
9
cm2時,t的值為(8-
7
)或(4-
13
)秒.
點評:考查了相似形綜合題,此題涉及的知識有:相似三角形的判定與性質(zhì),一元二次方程的解法,軸對稱的性質(zhì),勾股定理,以及根的判別式,是一道較難的相似形綜合題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•大連)如圖,△ABC是⊙O的內(nèi)接三角形,若∠BCA=60°,則∠ABO=
30
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大連)如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為
0.5
0.5
(精確到0.1).
投籃次數(shù)(n) 50 100 150 200 250 300 500
投中次數(shù)(m) 28 60 78 104 123 152 251
投中頻率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大連)如圖,為了測量電線桿AB的高度,小明將測量儀放在與電線桿的水平距離為9m的D處.若測角儀CD的高度為1.5m,在C處測得電線桿頂端A的仰角為36°,則電線桿AB的高度約為
8.1
8.1
m.(精確到0.1m).(參考數(shù)據(jù)sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大連)如圖,矩形ABCD中,AB=15cm,點E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A′處,則A′C=
8
8
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大連)如圖,拋物線y=ax2+bx+c經(jīng)過A(-
3
,0)、B(3
3
,0)、C(0,3)三點,線段BC與拋物線的對稱軸相交于D.該拋物線的頂點為P,連接PA、AD、DP,線段AD與y軸相交于點E.
(1)求該拋物線的解析式;
(2)在平面直角坐標系中是否存在點Q,使以Q、C、D為頂點的三角形與△ADP全等?若存在,求出點Q的坐標;若不存在,說明理由;
(3)將∠CED繞點E順時針旋轉(zhuǎn),邊EC旋轉(zhuǎn)后與線段BC相交于點M,邊ED旋轉(zhuǎn)后與對稱軸相交于點N,連接PM、DN,若PM=2DN,求點N的坐標(直接寫出結(jié)果).

查看答案和解析>>

同步練習冊答案