| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:新課程學(xué)習(xí)手冊(cè) 數(shù)學(xué) 七年級(jí)下冊(cè) 配人教版 題型:022
如圖所示,用8塊相同的長(zhǎng)方形地磚拼成一個(gè)大的長(zhǎng)方形,每塊地磚的長(zhǎng)和寬分別是多少?
分析:從圖中知,兩個(gè)相等關(guān)系為:①一個(gè)磚長(zhǎng)+一個(gè)磚寬=________,②兩個(gè)磚長(zhǎng)=________
設(shè)磚長(zhǎng)為x cm,寬為y cm,根據(jù)題意,得方程組
解這個(gè)方程組,得
因此,每塊地磚的長(zhǎng)和寬分別為_(kāi)_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書(shū) 八年級(jí)數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:013
反比例函數(shù)y=
(k≠0)任取一點(diǎn)M(a,b),過(guò)M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=
,故ab=k,所以S=|k|(如圖(1)).
這就是說(shuō),過(guò)雙曲線(xiàn)上任意一點(diǎn)作x軸、y軸的垂線(xiàn),所得的矩形面積為|k|.這就是k的幾何意義,會(huì)給解題帶來(lái)方便.現(xiàn)舉例如下:
例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=
(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。
解答:
=|k|
=|k|
故
=![]()
例2:如圖(3),在y=
(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過(guò)三點(diǎn)分別向x軸引垂線(xiàn),交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
![]()
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵
=
|k|=
,
=
|k|=![]()
=
|k|=![]()
S1=S2=S3,故選A.
例3:一個(gè)反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個(gè)反比例函數(shù)的解析式是________.
![]()
解答:∵S△AOM=
|k|
又S△AOM=3,
∴
|k|=3,|k|=6
∴k=±6
又∵曲線(xiàn)在第三象限
∴k>0∴k=6
∴所以反比例函數(shù)的解析式為y=
.
根據(jù)是述意義,請(qǐng)你解答下題:
如圖(5),過(guò)反比例函數(shù)y=
(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線(xiàn),垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
![]()
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關(guān)系不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
(1) 本次活動(dòng)共有多少件作品參評(píng)?
(2) 哪組上交的作品數(shù)量最多?有多少件?
(3) 經(jīng)過(guò)評(píng)比,第四組與第六組分別有10件與2件獲獎(jiǎng),那么這兩組中哪組的獲獎(jiǎng)率較高?
頻率
6
5
4
3
2
1 日期
1 6 11 16 21 26 31
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)請(qǐng)?jiān)趫D①的正方形ABCD內(nèi),畫(huà)出使∠APB=90°的一個(gè)點(diǎn)P,并說(shuō)明理由。
(2)請(qǐng)?jiān)趫D②的正方形ABCD內(nèi)(含邊),畫(huà)出使∠APB=60°的所有的點(diǎn)P,并說(shuō)明理由。
![]()
圖① 圖② 圖③
(3)如圖③,現(xiàn)在一塊矩形鋼板ABCD,AB=4,BC=3,工人師傅想用它裁出兩塊全等的、面積最大的△APB和△CP
D鋼板,且∠APB=∠CP
D=60°,請(qǐng)你在圖③中畫(huà)出符合要求的點(diǎn)P和P
。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線(xiàn)段和(或差)的有關(guān)問(wèn)題,這種方法稱(chēng)為面積法。請(qǐng)你運(yùn)用面積法求解下列問(wèn)題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。
(1)若BD=h,M時(shí)直線(xiàn)BC上的任意一點(diǎn),M到AB、AC的距離分別為
。
① 若M在線(xiàn)段BC上,請(qǐng)你結(jié)合圖形①證明:
= h;
② 當(dāng)點(diǎn)M在BC的延長(zhǎng)線(xiàn)上時(shí),
,h之間的關(guān)系為 (請(qǐng)直接寫(xiě)出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線(xiàn)
:y =
x + 6 ;
:y = -3x+6 若
上的一點(diǎn)M到
的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo)。
圖②
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com