【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學(xué)從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0364)____.
![]()
【答案】29.1m.
【解析】
根據(jù)坡度,勾股定理,可得DE的長,再根據(jù)平行線的性質(zhì),可得∠1,根據(jù)同角三角函數(shù)關(guān)系,可得∠1的坡度,根據(jù)坡度,可得DF的長,根據(jù)線段的和差,可得答案.
作DE⊥AB于E點,作AF⊥DE于F點,如圖,設(shè)DE=xm,CE=2.4xm,
由勾股定理,得x2+(2.4x)2=1952,
解得x≈75m,
∴DE=75m,CE=2.4x=180m,
∴EB=BC﹣CE=306﹣180=126m,
∵AF∥DG,
∴∠1=∠ADG=20°,
∵tan∠1=tan∠ADG=tan20°=0.364,AF=EB=126m,tan∠1=
=0.364,
∴DF=0.364AF=0.364×126=45.9,
∴AB=FE=DE﹣DF=75﹣45.9≈29.1m,
故答案為:29.1m.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,高度相同的兩根電線桿AB、CD均垂直于地面AF,某時刻電線桿AB的影子為地面上的線段AE,電線桿CD的影子為地面上的線段CF和坡面上的線段FG.已知坡面FG的坡比i=1:0.75,又AE=6米,CF=1米,FG=5米,那么電線桿AB的高度為______米.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,AD=4,AB=8,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于點G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,求四邊形AGBD的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解全校1800名學(xué)生對學(xué)校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名學(xué)生.對他們最喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將數(shù)據(jù)進行了統(tǒng)計并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).
(1)補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中表示“踢毽子”項目扇形圓心角的度數(shù).
(3)估計該校1800名學(xué)生中有多少人最喜愛球類活動?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,∠CAB=30°,AC=3
,則圖中陰影部分的面積是( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=
x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
![]()
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
![]()
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形
中,對角線
,
,點
從點
出發(fā)沿
方向勻速運動,速度是
,點
從點
出發(fā)沿
方向勻速運動,速度是
,
,與
交于點
,連接
.設(shè)運動時間為
.
(1)當(dāng)
于
時,求
的值;
(2)設(shè)四邊形
的面積為
,求
與
之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻
,使
平分
?若存在,求
的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC,∠BAC=90°,點D是BC中點,AD=AC,BC=2
,過A,D兩點作⊙O,交AB于點E
(1)求弦AD的長;
(2)如圖1,當(dāng)圓心O在AB上,且點M是圓O下方的半圓上的一動點,連接DM交AB于點N,求當(dāng)△DEM是等腰三角形時,求ON的長;
(3)如圖2,當(dāng)圓心O不在AB上且動圓⊙O與DB相交于點Q時,過D作DH⊥AB(垂足為H)并交⊙O于點P,問:當(dāng)⊙O變動時DP-DQ的值變不變?若不變,請求出其值;若變化,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com