分析 (1)根據(jù)題意可知,存在兩種情況,針對(duì)兩種情況,可以畫出相應(yīng)的圖形,由題目中的信息和同弧所對(duì)的圓周角相等,圓內(nèi)接四邊形對(duì)角互補(bǔ),可以分別求得兩種情況下∠APB的度數(shù),本題得以解決;
(2)根據(jù)題意畫出相應(yīng)的圖形,根據(jù)三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角,可以證明結(jié)論成立,本題得以解決;
(3)根據(jù)題意和第(2)問(wèn),可以畫出滿足∠ACB<∠APB<2∠ACB的點(diǎn)P所在的范圍,本題得以解決.
解答
(1)解:如右圖①所示,
根據(jù)題意可分兩種情況,
第一種情況,當(dāng)點(diǎn)P在P1時(shí),
可知,∠AP1B=∠ACB=45°;
第二種情況,當(dāng)點(diǎn)P在P2時(shí),
∵四邊形ACBP2是圓內(nèi)接四邊形,
∴∠AP2B+∠ACB=180°,
∵∠ACB=45°,
∴∠AP2B=135°,
故答案為:45°或135°;
(2)證明:如下圖②所示,延長(zhǎng)AP交⊙O于點(diǎn)Q,連接BQ.
則∠PQB=∠ACB,
∵∠APB為△PQB的一個(gè)外角,
∴∠APB>∠PQB,
即∠APB>∠ACB;
(3)點(diǎn)P所在的范圍如下圖③所示,![]()
點(diǎn)評(píng) 本題考查圓的綜合題、同弧所對(duì)的圓周角的關(guān)系、圓內(nèi)接四邊形對(duì)角的關(guān)系、三角形的外角和內(nèi)角的關(guān)系,解題的關(guān)鍵是明確題意,畫出相應(yīng)的圖形,找出所求問(wèn)題需要的條件,利用分類討論的數(shù)學(xué)思想解答問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -7,2 | B. | -$\frac{1}{7}$,2 | C. | -$\frac{1}{7}$,3 | D. | $\frac{1}{7}$,3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=2}\\{y=1}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=-1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=1}\end{array}\right.$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com