分析 (1)如圖1中,作FM⊥AD于M,F(xiàn)N⊥AB于N.只要證明△FME≌△FNB即可.
(2)如圖2中,GF的長(zhǎng)度是一個(gè)定值.連接BD交AC于O.首先求出OB的長(zhǎng),再證明△EGF≌△FOB,即可推出FG=OB=$\frac{\sqrt{2}}{2}$.
解答 (1)證明:如圖1中,作FM⊥AD于M,F(xiàn)N⊥AB于N.![]()
∵四邊形ABCD是正方形,
∴∠CAD=∠CAB=45°,
∴FN=FM,
∵∠FMA=∠MAN=∠FNA=90°,
∴∠MFN=∠EFB=90°,
∴∠MFE=∠NFB,
在△FME和△FNB中,
$\left\{\begin{array}{l}{∠FME=∠FNB}\\{FM=FN}\\{∠MEE=∠NFB}\end{array}\right.$,
∴△FME≌△FNB,
∴EF=FB.
(2)如圖2中,GF的長(zhǎng)度是一個(gè)定值.![]()
理由:連接BD交AC于O.
∵四邊形ABCD是正方形,
∴AD=AB=BC=CD=1,BD=$\sqrt{2}$,OB=OD=$\frac{\sqrt{2}}{2}$,AC⊥BD,
∴∠EFB=∠BOF=∠EGF=90°,
∵∠EFG+∠FEG=90°,∠EFG+∠BFO=90°,
∴∠FEO=∠BFO,
在△EGF和△FOB中,
$\left\{\begin{array}{l}{∠EGF=∠FOB}\\{∠FEG=∠BFO}\\{EF=FB}\end{array}\right.$,
∴△EGF≌△FOB,
∴FG=OB=$\frac{\sqrt{2}}{2}$,
∴FG的長(zhǎng)度是定值.
點(diǎn)評(píng) 本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 不可能是負(fù)數(shù) | B. | 可能是零或者負(fù)數(shù) | ||
| C. | 必定是零 | D. | 必定是正數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3-$2\sqrt{2}$ | B. | 3+$2\sqrt{2}$ | C. | 6-4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com