分析 對(duì)于已知一次函數(shù)解析式,令x與y為0分別求出y與x的值,確定出A與B坐標(biāo),過(guò)C作CD垂直于x軸,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,AB=AC,利用AAS得到三角形ABO與三角形CAD全等,利用全等三角形的對(duì)應(yīng)邊相等得到AD=OB=2,CD=OA=3,根據(jù)OA+AD求出OD的長(zhǎng),確定出C坐標(biāo),再由B坐標(biāo),利用待定系數(shù)法求出過(guò)B、C兩點(diǎn)直線的解析式即可.
解答 解:對(duì)于一次函數(shù)y=$\frac{2}{3}$x-2,令x=0得:y=-2;令y=0,解得x=3,
∴B的坐標(biāo)是(0,-2),A的坐標(biāo)是(3,0),
作CD⊥x軸于點(diǎn)D,如圖所示:![]()
∵∠BAC=90°,
∴∠OAB+∠CAD=90°,
又∵∠CAD+∠ACD=90°,
∴∠ACD=∠BAO.
在△ABO與△CAD中,
$\left\{\begin{array}{l}{∠BAO=∠ACD}\\{∠BOA=∠ADC=90°}\\{AB=CA}\end{array}\right.$,
∴△ABO≌△CAD(AAS),
∴AD=OB=2,CD=OA=3,OD=OA+AD=5,
∴C的坐標(biāo)是(5,-3),
設(shè)直線BC的解析式是y=kx+b,
根據(jù)題意得:$\left\{\begin{array}{l}{b=-2}\\{5k+b=-3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-\frac{1}{5}}\\{b=-2}\end{array}\right.$,
∴直線BC的解析式是y=-$\frac{1}{5}$x-2.
點(diǎn)評(píng) 此題考查了一次函數(shù)綜合題,涉及的知識(shí)有:一次函數(shù)與坐標(biāo)軸的交點(diǎn),全等三角形的判定與性質(zhì),待定系數(shù)法確定一次函數(shù)解析式,坐標(biāo)與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3x}{y}$=$\frac{9}{2}$ | B. | $\frac{x+3}{y+3}$=$\frac{6}{5}$ | C. | $\frac{x-3}{y-2}$=$\frac{3}{2}$$•\frac{x}{y}$ | D. | $\frac{x+y}{x}$=$\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{82}$-4 | B. | $\sqrt{82}$-1 | C. | 6-2$\sqrt{2}$ | D. | $\sqrt{17}$-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com