【題目】知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大的方便了人們的出行.中國北斗導(dǎo)航已經(jīng)全球組網(wǎng),它已經(jīng)走進(jìn)了人們的日常生活.如圖,某校組織學(xué)生到某地(用A表示)開展社會實(shí)踐活動,車到達(dá)B地后,發(fā)現(xiàn)A地恰好在B地的正北方向,且距離B地10千米.導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至C地,再沿北偏西45°方向行駛一段距離才能到達(dá)A地.求A、C兩地間的距離.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要測量一垂直于水平面的建筑物AB的高度,小明從建筑物底端B出發(fā),沿水平方向向右走30米到達(dá)點(diǎn)C,又經(jīng)過一段坡角為30°,長為20米的斜坡CD,然后再沿水平方向向右走了50米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,求建筑物AB的高度.(結(jié)果保留根號,參考數(shù)據(jù):sin24°≈
,cos24°≈
,tan24°=
)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
![]()
A. 1或
B. -
或
C.
D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=
在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=
的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=
的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A、B在反比例函數(shù)y=
(k>0,x>0)的圖象上,點(diǎn)A、B橫坐標(biāo)分別為2和6,對角線BD∥x軸,若菱形ABCD的面積為40,則k的值為( 。
![]()
A.15B.10C.
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)P從點(diǎn)A出發(fā)沿A→B→C路徑勻速運(yùn)動到點(diǎn)C,到達(dá)點(diǎn)C時停止運(yùn)動,過點(diǎn)P作PQ⊥AC于點(diǎn)Q. 若△APQ的面積為y,AQ的長為x,則下列能反映y與x之間的大致圖象是 ( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(1,0),點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),求四邊形BDCP面積的最大值;
(3)如圖②,動點(diǎn)M從點(diǎn)O出發(fā),以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,到達(dá)點(diǎn)B時停止運(yùn)動,且不與點(diǎn)O、B重合.設(shè)運(yùn)動時間為t秒,過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,交線段BC于點(diǎn)Q,連接OQ,是否存在t值,使得△BOQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點(diǎn)D,交BC于點(diǎn)K,連接DB、DC.
(1)如圖1,求證:DB=DC;
(2)如圖2,點(diǎn)E、F在⊙O上,連接EF交DB、DC于點(diǎn)G、H,若DG=CH,求證:EG=FH;
(3)如圖3,在(2)的條件下,BC經(jīng)過圓心O,且AD⊥EF,BM平分∠ABC交AD于點(diǎn)M,DK=
BM,連接GK、HK、CM,若△BDK與△CKM的面積差為1,求四邊形DGKH的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)
的圖象在第一象限交于點(diǎn)A(8,6),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和
的表達(dá)式;
(2)已知點(diǎn)C(0,10),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC。求此時點(diǎn)M的坐標(biāo).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com