【題目】已知
,
,
為正整數(shù),
.設(shè)
,
,
,
為坐標(biāo)原點(diǎn).若
,且
.
(1)求圖象經(jīng)過(guò)
,
,
三點(diǎn)的二次函數(shù)的解析式;
(2)點(diǎn)
是拋物線上的一動(dòng)點(diǎn),直線
交線段
于點(diǎn)
,若
,
的面積
,
滿足
,求此時(shí)點(diǎn)
的坐標(biāo).
【答案】(1)
;(2)
.
【解析】
(1)由射影定理得到
,即
,然后代入到已知條件中得到
,然后利用一元二次方程根與系數(shù)的關(guān)系求得
,
.利用待定系數(shù)法求二次函數(shù)解析式;
(2)由
得
,從而確定Q點(diǎn)坐標(biāo),然后利用待定系數(shù)法求得直線AQ的解析式,然后聯(lián)立方程組求點(diǎn)D坐標(biāo).
解:(1)∵
,
,∴
,即
.
∵
,
∴
.
又∵![]()
,
![]()
![]()
∴
,即
.
∵
,
,
∴
,
是關(guān)于
的一元二次方程
①的兩個(gè)不相等的正整數(shù)根,
∴
,解得
.
又∵
為正整數(shù),故
或
.
當(dāng)
時(shí),方程①為
,沒(méi)有整數(shù)解.
當(dāng)
時(shí),方程①為
,兩根為
,
.
綜合知:
,
,
.
設(shè)圖象經(jīng)過(guò)
,
,
三點(diǎn)的二次函數(shù)的解析式為
,
將點(diǎn)
的坐標(biāo)代入得
,解得
.
∴圖象經(jīng)過(guò)
,
,
三點(diǎn)的二次函數(shù)的解析式為
.
(2)如圖,直線
交線段
于點(diǎn)
,由
,得
,
∴
,
,∴
,∵
,
設(shè)直線AQ的解析式為y=kx+b
可得
解得![]()
∴直線AQ的解析式為:
,
聯(lián)立
,
消去
整理可得,
,
由韋達(dá)定理:
,而
,
∴
,∴
,
∴
點(diǎn)坐標(biāo)為:
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問(wèn):當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣2mx+m2﹣3(m是常數(shù))
(1)證明:無(wú)論m取什么實(shí)數(shù),該拋物線與x軸都有兩個(gè)交點(diǎn).
(2)設(shè)拋物線的頂點(diǎn)為A,與x軸的兩個(gè)交點(diǎn)分別為B、D,點(diǎn)B在點(diǎn)D的右側(cè),與y軸的交點(diǎn)為 C.
①若點(diǎn)P為△ABD的外心,求點(diǎn)P的坐標(biāo)(用含m的式子表示);
②當(dāng)|m|≤
,m≠0時(shí),△ABC的面積是否有最大值?如果有,請(qǐng)求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷A、B兩種商品,現(xiàn)有如下信息:
信息1:A、B兩種商品的進(jìn)貨單價(jià)之和是3元;
信息2:A商品零售單價(jià)比進(jìn)貨單價(jià)多1元,B商品零售單價(jià)比進(jìn)貨單價(jià)的2倍少1元;
信息3:按零售單價(jià)購(gòu)買A商品3件和B商品2件,共付12元.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求A、B兩種商品的零售單價(jià);
(2)該商店平均每天賣出A商品500件和B商品1500件.經(jīng)調(diào)查發(fā)現(xiàn),A種商品零售單價(jià)每降0.1元,A種商品每天可多銷售100件.商店決定把A商品的零售單價(jià)下降m(m>0)元,B商品的零售單價(jià)和銷量都不變,在不考慮其他因素的條件下,當(dāng)m為多少時(shí),商品每天銷售A、B兩種商品獲取的總利潤(rùn)為2000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五張如圖所示的長(zhǎng)為
,寬為
的小長(zhǎng)方形紙片,按如圖的方式不重疊地放在矩形
中,未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為
,當(dāng)
的長(zhǎng)度變化時(shí),按照同樣的放置方式,
始終保持不變,則
,
滿足的關(guān)系式為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,點(diǎn)D是BC上一點(diǎn),∠ADE=∠B,
(1)求證:△ABD~△DCE;
(2)點(diǎn)F在AD上,且
=
,求證:EF∥CD.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】華星商店準(zhǔn)備從陽(yáng)光機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件進(jìn)行銷售,若一個(gè)甲種零件的進(jìn)價(jià)比一個(gè)乙種零件的進(jìn)價(jià)多50元,用4000元購(gòu)進(jìn)甲種零件的數(shù)量是用1500元購(gòu)進(jìn)乙種零件的數(shù)量的2倍.
(1)求每個(gè)甲種零件,每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)華星商店甲種零件每件售價(jià)為260元,乙種零件每件售價(jià)為190元,商店根據(jù)市場(chǎng)需求.決定向該廠購(gòu)進(jìn)一批零件、且購(gòu)進(jìn)乙種零件的數(shù)量比購(gòu)進(jìn)甲種零件的數(shù)量的2倍還多4個(gè),若本次購(gòu)進(jìn)的兩種零件全部售出后,總獲利不少于2400元、求該商店本次購(gòu)進(jìn)甲種零件至少是多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=
AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
![]()
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中 xOy 中,對(duì)于⊙C及⊙C內(nèi)一點(diǎn) P,給出如下定義:若存在過(guò)點(diǎn) P 的直線 l,使得它與⊙C 相交所截得的弦長(zhǎng)為
,則稱點(diǎn) P 為⊙C的“k-近內(nèi)點(diǎn)”.
(1)已知⊙O的半徑為 4,
①在點(diǎn)中
,⊙O的“4-近內(nèi)點(diǎn)”是______________;
②點(diǎn) P 在直線y=
x上,若點(diǎn) P 為⊙O的“4-近內(nèi)點(diǎn)”,則點(diǎn) P 的縱坐標(biāo)y的取值范圍是____________;
(2)⊙C的圓心為(-1,0),半徑為 3,直線
x 軸,y 軸分別交于 M,N,若線段 MN 上存在⊙C的 “2
-近內(nèi)點(diǎn)”,則 b 的取值范圍是____________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com