| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 根據(jù)已知先判斷△ABC≌△EFA,則∠AEF=∠BAC,得出EF⊥AC,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出AD=4AG,從而得到答案.
解答 解:∵△ACE是等邊三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F為AB的中點,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正確,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中點,
∴HF=$\frac{1}{2}$BC,
∵BC=$\frac{1}{2}$AB,AB=BD,
∴HF=$\frac{1}{2}$BD;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),故④正確;
∴AE=DF,
∵FE=AB,
∴四邊形ADFE為平行四邊形,
∴AD≠AE,;
故②說法不正確;
∴AG=$\frac{1}{2}$AF,
∴AG=$\frac{1}{4}$AB,
∵AD=AB,
則AD=4AG,故③說法正確,
正確的有3個,
故選:C.
點評 本題考查了菱形的判定和性質(zhì),以及全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是需先根據(jù)已知條件先判斷出一對全等三角形,然后按排除法來進行選擇.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=$\frac{1}{{x}^{2}}$ | B. | y=$\sqrt{2}$x | C. | y=$\frac{5}{x}$ | D. | y=$\frac{x}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | sinB=$\frac{3}{5}$ | B. | cosB=$\frac{3}{4}$ | C. | tanB=$\frac{4}{3}$ | D. | cotB=$\frac{3}{4}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com