分析 (1)連接OC,如圖,利用切線的性質(zhì)得OC⊥DE,再利用圓周角定理得到∠BAC=∠EAC,加上∠BAC=∠OCA,所以∠EAC=∠OCA.則OC∥AE,從而得到AE⊥DE;
(2)連接BF交OC于G,如圖,利用圓周角定理得到∴∠BFA=90°.易得四邊形CEFG是矩形.則CO⊥BF,CF=GF,利用垂徑定理得到BG=GF,再在Rt△ABF中利用含30度的直角三角形三邊的關(guān)系得到BF=$\sqrt{3}$AF=4$\sqrt{3}$,則BG=GF=2$\sqrt{3}$,從而得到CE的長(zhǎng).
解答
(1)證明:連接OC,如圖,
∵DE切⊙O于C,
∴OC⊥DE,
∵點(diǎn)C是$\widehat{BF}$的中點(diǎn),
∴∠BAC=∠EAC,
∵OC=OA,
∴∠BAC=∠OCA,
∴∠EAC=∠OCA.
∴OC∥AE.
∴AE⊥DE;
(2)解:連接BF交OC于G,如圖,
∵AB是⊙O直徑,
∴∠BFA=90°.
易得四邊形CEFG是矩形.
∴CO⊥BF,CF=GF,
∴BG=GF,
在Rt△ABF中,∠BAE=60°,AF=4,
∴BF=$\sqrt{3}$AF=4$\sqrt{3}$,
∴BG=GF=2$\sqrt{3}$
∴CE=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | y=$\frac{3}{2}$ | C. | 3-$\sqrt{2}$ | D. | 3-$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 201.4×108 | B. | 2.014×108 | C. | 2.014×109 | D. | 2.014×1010 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 138×103米 | B. | 13.8×104米 | C. | 1.38×105米 | D. | 1.38×103米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com