如圖,平行四邊形ABCD中,∠BAD的平分線交BC邊于點M,而MD平分∠AMC,若∠MDC=45°,則∠BAD= ,∠BAC= ![]()
60°,120°
【解析】
試題分析:由平行四邊形推出∠AMC+∠MAD=180°,∠B+∠BAD=180°,由三角形的內(nèi)角和定理得到∠CMD+2∠MAD=135°,因為∠MAD+2∠CMD=180°,解方程組即可求出∠MAD,進一步求出∠BAD和∠ABC的度數(shù).
∵平行四邊形ABCD,
∴BC∥AD,∠C=∠BAD,
∴∠AMC+∠MAD=180°,∠B+∠BAD=180°
∵∠BAD的平分線AM,MD平分∠AMC,
∴∠C=∠BAD=2∠MAD,∠AMD=∠CMD,
∵∠C+∠CMD+∠CDM=180°,∠MDC=45°,
即:∠MAD+2∠CMD=180°,且∠CMD+2∠MAD=135°,
解得:∠MAD=30°,
∴∠BAD=60°,∠ABC=120°.
考點:平行四邊形的性質(zhì),三角形的內(nèi)角和定理,角平分線的性質(zhì)
點評:平行四邊形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中極為重要的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源: 題型:
| OA |
| AB |
| 16 |
| 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 5 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com