【題目】甲、乙、丙三個(gè)布袋都不透明,甲袋中裝有1個(gè)紅球和1個(gè)白球;乙袋中裝有一個(gè)紅球和2個(gè)白球;丙袋中裝有2個(gè)白球.這些球除顏色外都相同.從這3個(gè)袋中各隨機(jī)地取出1個(gè)球. (Ⅰ)取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是多少?
(Ⅱ)取出的3個(gè)球全是白球的概率是多少?
【答案】解:(Ⅰ)畫(huà)樹(shù)狀圖得: ∴一共有12種等可能的結(jié)果,
取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的有2種情況,
∴取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是
=
;
(Ⅱ)∵取出的3個(gè)球全是白球的有4種情況,
∴取出的3個(gè)球全是白球的概率是
=
.![]()
【解析】(Ⅰ)此題需要三步完成,所以采用樹(shù)狀圖法比較簡(jiǎn)單,然后樹(shù)狀圖分析所有等可能的出現(xiàn)結(jié)果,根據(jù)概率公式即可求出該事件的概率;(Ⅱ)求得取出的3個(gè)球全是白球的所有情況,然后根據(jù)概率公式即可求出該事件的概率.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解列表法與樹(shù)狀圖法(當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱(chēng)軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣
),(
)是拋物線(xiàn)上兩點(diǎn),則y1<y2其中結(jié)論正確的是( ) ![]()
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長(zhǎng)是cm. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線(xiàn)相交于點(diǎn)P,拋物線(xiàn)L經(jīng)過(guò)O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線(xiàn)上的動(dòng)點(diǎn).![]()
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫(xiě)出O、P、A三點(diǎn)坐標(biāo);
②求拋物線(xiàn)L的解析式;
(2)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P在AB上,AP=2,點(diǎn)E、F同時(shí)從點(diǎn)P出發(fā),分別沿PA、PB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A、B勻速運(yùn)動(dòng),點(diǎn)E到達(dá)點(diǎn)A后立刻以原速度沿AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí)停止,點(diǎn)E也隨之停止.在點(diǎn)E、F運(yùn)動(dòng)過(guò)程中,以EF為邊作正方形EFGH,使它與△ABC在線(xiàn)段AB的同側(cè).設(shè)E、F運(yùn)動(dòng)的時(shí)間為t/秒(t>0),正方形EFGH與△ABC重疊部分面積為S.
(1)當(dāng)t=1時(shí),正方形EFGH的邊長(zhǎng)是 . 當(dāng)t=3時(shí),正方形EFGH的邊長(zhǎng)是 .
(2)當(dāng)0<t≤2時(shí),求S與t的函數(shù)關(guān)系式;
(3)直接答出:在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),S最大?最大面積是多少? ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)
的圖象是直線(xiàn)l1 , l1與x軸、y軸分別相交于A、B兩點(diǎn).直線(xiàn)l2過(guò)點(diǎn)C(a,0)且與直線(xiàn)l1垂直,其中a>0.點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)P沿射線(xiàn)AB運(yùn)動(dòng),速度為每秒4個(gè)單位;點(diǎn)Q沿射線(xiàn)AO運(yùn)動(dòng),速度為每秒5個(gè)單位. ![]()
(1)寫(xiě)出A點(diǎn)的坐標(biāo)和AB的長(zhǎng);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了多少秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線(xiàn)l2、y軸都相切,求此時(shí)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,AO=
,BO=1,AB的垂直平分線(xiàn)交AB于點(diǎn)E,交射線(xiàn)BO于點(diǎn)F.點(diǎn)P從點(diǎn)A出發(fā)沿射線(xiàn)AO以每秒
個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O出發(fā)沿OB方向以每秒1個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.![]()
(1)當(dāng)t= 時(shí),PQ∥EF;
(2)若P、Q關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為P′、Q′,當(dāng)線(xiàn)段P′Q′與線(xiàn)段EF有公共點(diǎn)時(shí),t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx(a≠0)經(jīng)過(guò)點(diǎn)A(2,0),點(diǎn)B(3,3),BC⊥x軸于點(diǎn)C,連接OB,等腰直角三角形DEF的斜邊EF在x軸上,點(diǎn)E的坐標(biāo)為(﹣4,0),點(diǎn)F與原點(diǎn)重合![]()
(1)求拋物線(xiàn)的解析式并直接寫(xiě)出它的對(duì)稱(chēng)軸;
(2)△DEF以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)D落在BC邊上時(shí)停止運(yùn)動(dòng),設(shè)△DEF與△OBC的重疊部分的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式;
(3)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),當(dāng)△ABP是直角三角形時(shí),請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S2;…,依此類(lèi)推,則Sn可表示為 .(用含n的代數(shù)式表示,其中n為正整數(shù))![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com