如圖1,矩形ABCD中,AB=21,AD=12,E是CD邊上的一點,CE=5,M是BC邊上的中點,動點P從點A出發(fā),沿AB邊以每秒1個單位長度的速度向終點B運動,連結PM.設動點P的運動時間是t秒.
![]()
(1)求線段AE的長;
(2)當△ADE與△PBM相似時,求t的值;
(3)如圖2,連接EP,過點P作PH⊥AE于H.①當EP平分四邊形PMEH的面積時,求t的值;②以PE為對稱軸作線段BC的軸對稱圖形B′C′,當線段B′C′與線段AE有公共點時,寫出t的取值范圍(直接寫出答案).
(1)AE=20;(2)t=13或t=
;(3)①t=
②
≤t≤20.
【解析】
試題分析:(1)在直角三角形ADE中,已知AD=12,DE=16,根據(jù)勾股定理可求出AE的值;(2)分兩種情況討論:一、當∠DAE=∠PMB時,根據(jù)相似三角形的性質:相似三角形的對應邊的比相等.即可求出t的值;二、當∠DAE=∠MPB時,由相似三角形的性質即可求出t的值.(3)①根據(jù)題意得出S△EHP=S△EMP,求出t的兩個值,再根據(jù)t的取值范圍即可求出t的值;②根據(jù)PE為對稱軸作線段BC的軸對稱圖形B′C′,當點B′在線段AE上時,如圖3所示,由勾股定理求得EB′=13,AB′=7,根據(jù)題意可證得△AB′N與△ADE相似,根據(jù)相似三角形對應邊的比相等,可求出AN=5.6,NB′=4.2,則PN=t-5.6,PB′=21-t,再根據(jù)勾股定理可求出t的值為
.當點C′在線段AE上時,如圖4,則AC′=20-5=15,可證△AC′F與△ADE相似,可分別求出AF,C′F的值,在△PFB′中,利用勾股定理可求PF的值,從而求出AP的值,即求出t的值,所以有
≤t≤20.
![]()
試題解析:(1)∵ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12,DE=16,∴AE=20;
(2)∵∠D=∠B=90°,∴△ADE與△PBM相似時,有兩種可能;
當∠DAE=∠PMB時,有
=
,即
=
,解得:t=13;
當∠DAE=∠MPB時,有
=
,即
=
,解得t=
;
(3)①由題意得:S△EHP=S△EMP,
∴
×
×(20﹣
t)=
×12×(5+21﹣t)﹣
×6×(21﹣t)﹣
×6×5,
解得:t=
,
∵0<t<21,
∴t=
;
②根據(jù)題意得:
≤t≤20.
考點:1、勾股定理;2、相似三角形的判定與性質;3、軸對稱的性質.
科目:初中數(shù)學 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
| D、不能確定 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 7 | 2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com