分析 作M關于OB的對稱點M′,作N關于OA的對稱點N′,連接M′N′,即為MP+PQ+QN的最小值.
解答
解:作M關于OB的對稱點M′,作N關于OA的對稱點N′,
連接M′N′,即為MP+PQ+QN的最小值.
根據(jù)軸對稱的定義可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
∴△ONN′為等邊三角形,△OMM′為等邊三角形,
∴∠N′OM′=90°,
∴在Rt△M′ON′中,
M′N′=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$.
故答案為$\sqrt{10}$.
點評 本題考查了軸對稱--最短路徑問題,根據(jù)軸對稱的定義,找到相等的線段,得到等邊三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 若a>b,則ac2>bc2 | |
| B. | 對角線互相垂直且相等的四邊形是正方形 | |
| C. | 兩個等腰直角三角形一定相似 | |
| D. | 打開數(shù)學課本,恰好翻到第88頁是必然事件 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com