分析 由AE⊥BC,AF⊥CD,∠EAF=60°,根據(jù)四邊形的內(nèi)角和為360°,求得∠C;根據(jù)平行四邊形的對邊平行,可得∠B與∠C互補(bǔ),即可求得∠B=60°,在直角三角形ABE中求得AB的長,同理求得AD的長,繼而求得平行四邊形ABCD的周長和面積.
解答 解:∵AE⊥BC,AF⊥CD,∠EAF=60°,
∴∠AEB=∠AEC=∠AFC=∠AFD=90°,
∴∠C=120°,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,AD∥BC,∠B=∠D,
∴∠B+∠C=180°,
∴∠B=∠D=60°,
∴∠BAE=∠FAD=30°,
∵BE=2cm,F(xiàn)D=3cm,
∴AB=4cm,BC=AD=6cm,AF=3$\sqrt{3}$,
∴?ABCD的周長為=2(AB+BC)=20cm,
S?ABCD=CD•AF=4×3$\sqrt{3}$=12$\sqrt{3}$cm2.
點(diǎn)評 此題考查了平行四邊形的性質(zhì):平行四邊形的對邊平行且相等.還考查了直角三角形中30°角所對的直角邊是斜邊的一半,正確求得∠B和∠DAF的度數(shù)是關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (4,5) | B. | (-4,-5) | C. | (-4,5) | D. | (-5,4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | -4 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com