分析 (1)利用矩形的性質(zhì)得出∠CAE=∠ACF,∠CFO=∠AEO,進(jìn)而求出△AOE≌△COF(AAS),得出答案即可;
(2)首先求出∠BAC=30°,進(jìn)而得出∠BEF=2∠OBE,利用勾股定理求出AB即可.
解答 (1)證明:∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠CAE=∠ACF,∠CFO=∠AEO,
在△AOE和△COF中,$\left\{\begin{array}{l}{∠CAE=∠ACF}&{\;}\\{∠CFO=∠AEO}&{\;}\\{AE=CF}&{\;}\end{array}\right.$,
∴△AOE≌△COF(AAS),![]()
∴OE=OF;
(2)解:連接OB,如圖所示:
∵BF=BE,OE=OF,
∴BO⊥EF,
由(1)知,△AOE≌△COF,
∴OA=OC,
∵四邊形ABCD是矩形,
∴∠ABC=90°,
∴BO=$\frac{1}{2}$AC=OA,
∴∠BAC=∠OBA,
又∠BEF=2∠BAC,
∴∠BEF=2∠OBE,
而Rt△OBE中,∠BEO+∠OBE=90°,
∴∠BAC=30°,
∴BC=$\frac{1}{2}$AC=3$\sqrt{3}$,
∴AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=9.
點(diǎn)評(píng) 此題主要考查了矩形的性質(zhì)以及勾股定理和全等三角形的判定與性質(zhì)等知識(shí),得出△AOE≌△COF是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 兩條射線(xiàn)組成的圖形叫做角 | |
| B. | 小于平角的角可分為銳角和鈍角兩類(lèi) | |
| C. | 射線(xiàn)就是直線(xiàn) | |
| D. | 兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示 | B. | 數(shù)軸上的點(diǎn)都表示有理數(shù) | ||
| C. | 實(shí)數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示 | D. | 數(shù)軸上的點(diǎn)都表示實(shí)數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 菱形 | B. | 矩形 | C. | 對(duì)角線(xiàn)互相垂直 | D. | 對(duì)角線(xiàn)相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com