分析 如圖,設(shè)圖②中半圓的圓心為O,與BC的切點(diǎn)為M,連接OM,根據(jù)切線的性質(zhì)可以得到∠OMC=90°,而根據(jù)已知條件可以得到∠DCB=30°,設(shè)AB為2xcm,根據(jù)等邊三角形得到CD=$\sqrt{3}$xcm,而CE=2cm,又將量角器沿DC方向平移1cm,由此得到半圓的半徑為($\sqrt{3}$x-2)cm,OC=($\sqrt{3}$x-1)cm,然后在Rt△OCM中利用三角函數(shù)可以列出關(guān)于x的方程,解方程即可求解.
解答 解:如圖,設(shè)圖②中半圓的圓心為O,與BC的切點(diǎn)為M,
連接OM,
則OM⊥MC,
∴∠OMC=90°,
依題意知道∠DCB=30°,
設(shè)AB為2xcm,
∵△ABC是等邊三角形,
∴CD=$\sqrt{3}$xcm,
而CE=2cm,又將量角器沿DC方向平移1cm,
∴半圓的半徑為($\sqrt{3}$x-2)cm,OC=($\sqrt{3}$x-1)cm,
∴sin∠DCB=$\frac{OM}{OC}$=$\frac{1}{2}$,
∴$\frac{\sqrt{3}x-2}{\sqrt{3}x-1}$=$\frac{1}{2}$,
∴x=$\sqrt{3}$,
∴AB=2x=2$\sqrt{3}$(cm),
故答案為:2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -x2y和5x2y | B. | 23和2 | C. | 2xy和 $\frac{3xy}{2}$ | D. | ax2和a2x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,$-\frac{7}{4}$) | B. | ($\frac{7}{4}$,0) | C. | ($\frac{3}{2}$,0) | D. | ($\frac{7}{5}$,0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10米 | B. | 9.6米 | C. | 6.4米 | D. | 4.8米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com