已知:如圖,△ABC中,點D、E是邊AB上的點,CD平分∠ECB,且
.
![]()
(1)求證:△CED∽△ACD;
(2)求證:
.
(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由BC2=BD•BA,∠B是公共角,可證得△BCD∽△BAC,又由CD平分∠ECB,可得∠ECD=∠A,繼而證得:△CED∽△ACD;
(2)由△BCD∽△BAC與△CED∽△ACD,可得
,
,繼而證得
.
試題解析: (1)∵BC2=BD•BA,
∴BD:BC=BC:BA,
∵∠B是公共角,
∴△BCD∽△BAC,
∴∠BCD=∠A,
∵CD平分∠ECB,
∴∠ECD=∠BCD,
∴∠ECD=∠A,
∵∠EDC=∠CDA,
∴△CED∽△ACD;
(2)∵△BCD∽△BAC,△CED∽△ACD,
∴
,
,
∴
.
考點: 相似三角形的判定與性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com