等腰三角形的兩邊長(zhǎng)分別為2cm和4cm,則這個(gè)三角形的周長(zhǎng)為__________cm.
10cm.
【考點(diǎn)】等腰三角形的性質(zhì);三角形三邊關(guān)系.
【分析】題中沒(méi)有指明哪邊是底哪邊是腰,則應(yīng)該分兩種情況進(jìn)行分析.
【解答】解:(1)當(dāng)三邊是2cm,2cm,4cm時(shí),2+2=4cm,不符合三角形的三邊關(guān)系,應(yīng)舍去;
(2)當(dāng)三邊是2cm,4cm,4cm時(shí),符合三角形的三邊關(guān)系,此時(shí)周長(zhǎng)是10cm;
所以這個(gè)三角形的周長(zhǎng)是10cm.
故填10.
【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒(méi)有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點(diǎn)D、E分別為AM、AB上的動(dòng)點(diǎn),則BD+DE的最小值是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中AD是∠A的外角平分線,P是AD上一動(dòng)點(diǎn)且不與點(diǎn)A,D重合,記PB+PC=a,AB+AC=b,則a,b的大小關(guān)系是( )
![]()
A.a(chǎn)>b B.a(chǎn)=b C.a(chǎn)<b D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:①∠ADC=45°;②BD=
AE;③AC+CE=AB;④AB﹣BC=2FC;其中正確的結(jié)論有( )
![]()
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過(guò)點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC=
b2+
ab.
又∵S四邊形ADCB=S△ADB+S△DCB=
c2+
a(b﹣a)
∴
b2+
ab=
c2+
a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點(diǎn),CD=4,則線段DF的長(zhǎng)度為__________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com