欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點,點F在邊AC的延長線上,∠FEC=∠B,求證:四邊形CDEF是平行四邊形.

分析 由三角形中位線定理得出DE∥AC,由直角三角形斜邊上的中線性質得出CD=$\frac{1}{2}$AB=AD=BD,由等腰三角形的性質得出∠B=∠DCE,證出∠FEC=∠DCE,得出DC∥EF,即可證出四邊形CDEF是平行四邊形.

解答 證明:∵在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點,
∴DE∥AC,CD=$\frac{1}{2}$AB=AD=BD,
∴∠B=∠DCE,
∵∠FEC=∠B,
∴∠FEC=∠DCE,
∴DC∥EF,
∴四邊形CDEF是平行四邊形.

點評 本題考查了平行四邊形的判定、三角形中位線定理、直角三角形斜邊上的中線性質、等腰三角形的性質、平行線的判定;熟練掌握平行四邊形的判定方法,證明DC∥EF是解決問題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

10.如圖,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.試說明CD∥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,拋物線y=ax2+bx+4與x軸交于A(-2,0),D兩點,與y軸交于點C,對稱軸x=3交x軸交于點B.
(1)求拋物線的解析式.
(2)點M是x軸上方拋物線上一動點,過點M作MN⊥x軸于點N,交直線BC于點E.設點M的橫坐標為m,用含m的代數(shù)式表示線段ME的長,并求出線段ME長的最大值.
(3)若點P在y軸的正半軸上,連接PA,過點P作PA垂線,交拋物線的對稱軸于點Q.是否存在點P,使以點P、A、Q為頂點的三角形與△BAQ全等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.已知正六邊形ABCDEF的邊心距為$\sqrt{3}$cm,則正六邊形的半徑為( 。ヽm.
A.2$\sqrt{3}$B.2C.$\sqrt{3}$D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.已知一個正數(shù)的兩個平方根分別是3a+2和a+14,求這個數(shù)的立方根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.計算:${(-\sqrt{3})^2}+{(\frac{1}{3})^{-2}}+\sqrt{27}-\frac{{2+\sqrt{3}}}{{2-\sqrt{3}}}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.已知直線y=2x-1.
(1)求它關于x軸對稱的直線所對應的函數(shù)表達式;
(2)將直線y=2x-1向左平移3個單位,求平移后所得直線所對應函數(shù)表達式;
(3)將直線y=2x-1繞原點順時針旋轉90°,求旋轉后所直線所對應的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6,沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個三角形(如圖2所示).將紙片△AC1D1沿直線D2B(A→B方向)平移(點A,D1,D2,B始終在同一直線上),當D1與點B重合時,停止平移.在平移的過程中,C1D1與BC2交于點E,AC1與C2D2、BC2分別交于點F、P.
(1)當△AC1D1平移到如圖3所示位置時,猜想D1E與D2F的數(shù)量關系,并說明理由.
(2)設平移距離D2D1為x,△AC1D1和△BC2D2重復部分面積為y,請寫出y與x的函數(shù)關系式,以及自變量的取值范圍;
(3)對于(2)中的結論是否存在這樣的x,使得重復部分面積等于原△ABC紙片面積的$\frac{3}{8}$?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.已知平行四邊形ABCD中,∠A=2∠B,則∠C=( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步練習冊答案