分析 先利用互余計(jì)算出∠BAC=90°-70°=20°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ACA′=90°,∠B′A′C=∠BAC=20°,CA=CA′,則可判斷△CAA′為等腰直角三角形得到∠CA′A=45°,然后計(jì)算∠CA′A-∠B′A′C即可.
解答 解:在Rt△ABC中,∵∠B=70°,
∴∠BAC=90°-70°=20°,
∵Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,
∴∠ACA′=90°,∠B′A′C=∠BAC=20°,CA=CA′,
∴△CAA′為等腰直角三角形,
∴∠CA′A=45°,
∴∠B′A′A=∠CA′A-∠B′A′C=45°-20°=25°.
故答案為25°.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決本題的關(guān)鍵是證明△CAA′為等腰直角三角形,
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12° | B. | 18° | C. | 22° | D. | 30° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com