分析 以拋物線的對(duì)稱軸為y軸,水平地面為x軸,建立平面直角坐標(biāo)系,設(shè)解析式,結(jié)合已知確定拋物線上點(diǎn)的坐標(biāo),代入解析式確定拋物線的解析式,由圓桶的直徑,求出圓桶兩邊緣縱坐標(biāo)的值,確定m的范圍,根據(jù)m為正整數(shù),得出m的值,即可得到當(dāng)網(wǎng)球可以落入桶內(nèi)時(shí),豎直擺放圓柱形桶個(gè)數(shù).
解答 解:(1)以點(diǎn)O為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系(如圖),![]()
M(0,5),B(2,0),C(1,0),D($\frac{3}{2}$,0)
設(shè)拋物線的解析式為y=ax2+k,
拋物線過(guò)點(diǎn)M和點(diǎn)B,
則k=5,a=-$\frac{5}{4}$.
∴拋物線解析式為:y=-$\frac{5}{4}$x2+5;
∴當(dāng)x=1時(shí),y=$\frac{15}{4}$;
當(dāng)x=$\frac{3}{2}$時(shí),y=$\frac{35}{16}$.
∴P(1,$\frac{15}{4}$),Q($\frac{3}{2}$,$\frac{35}{16}$)在拋物線上;
設(shè)豎直擺放圓柱形桶m個(gè)時(shí)網(wǎng)球可以落入桶內(nèi),
由題意,得,$\frac{35}{16}$≤$\frac{3}{10}$m≤$\frac{15}{4}$,
解得:7$\frac{7}{24}$≤m≤12$\frac{1}{2}$;
∵m為整數(shù),
∴m的最小整數(shù)值為:8,
∴豎直擺放圓柱形桶至少8個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
故答案為:8.
點(diǎn)評(píng) 研究拋物線的問(wèn)題,需要建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,根據(jù)已知條件,求出相關(guān)點(diǎn)的坐標(biāo),確定解析式,這是解答其它問(wèn)題的基礎(chǔ).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com