分析 (1)因?yàn)椤鰽OB為等腰直角三角形,A(4,4),作AE⊥OB于E,則B點(diǎn)坐標(biāo)可求;
(2)作AE⊥OB于E,DF⊥OB于F,求證△DFC≌△CEA,再根據(jù)等量變換,即可求出∠AOD的度數(shù)可求;
(3)在AM上截取AN=OF,連EN,易證△EAN≌△EOF,再根據(jù)角與角之間的關(guān)系,證明△NEM≌△FEM,則有AM-MF=OF,即可求證等式成立.
解答
解:(1)如圖所示,作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB為等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
(2)方法一:如圖所示,作AE⊥OB于E,DF⊥OB于F,![]()
∵△ACD為等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA(AAS),
∴EC=DF,F(xiàn)C=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB為等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
方法二:如圖所示,過(guò)C作CK⊥x軸交OA的延長(zhǎng)線于K,![]()
則△OCK為等腰直角三角形,OC=CK,∠K=45°,
又∵△ACD為等腰Rt△,
∴∠ACK=90°-∠OCA=∠DCO,AC=DC,
∴△ACK≌△DCO(SAS),
∴∠DOC=∠K=45°,
∴∠AOD=∠AOB+∠DOC=90°;
(3)AM=FM+OF成立,
理由:
方法一:如圖所示,在AM上截取AN=OF,連EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS),
∴∠OEF=∠AEN,EF=EN,
又∵△EGH為等腰直角三角形,
∴∠GEH=45°,即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM-MF=AM-MN=AN,
∴AM-MF=OF,
即AM=FM+OF;
方法二:如圖所示,在x軸的負(fù)半軸上截取ON=AM,連EN,MN,![]()
則△EAM≌△EON(SAS),
∴EN=EM,∠NEO=∠MEA,
即∠NEF+∠FEO=∠MEA,
而∠MEA+∠MEO=90°,
∴∠NEF+∠FEO+∠MEO=90°,
而∠FEO+∠MEO=45°,
∴∠NEF=45°=∠MEF,
∴△NEF≌△MEF(SAS),
∴NF=MF,
∴AM=OF=OF+NF=OF+MF,
即AM=FM+OF.
點(diǎn)評(píng) 此題屬于三角形綜合題,主要考查了全等三角形的判定、等腰三角形的性質(zhì)和坐標(biāo)與圖形性質(zhì)的綜合應(yīng)用,考核了學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力.解決問(wèn)題的關(guān)鍵是根據(jù)截長(zhǎng)補(bǔ)短的方法,作輔助線構(gòu)造全等三角形,根據(jù)全等三角形的性質(zhì)進(jìn)行推導(dǎo)計(jì)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 122.5° | B. | 135° | C. | 112.5° | D. | 115.5° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 20° | B. | 26° | C. | 30° | D. | 36° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com