分析 (1)分類討論:當(dāng)k=0時(shí),方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)k≠0時(shí),計(jì)算判別式得到△=(3k-1)2,由此得到△≥0,由此判斷當(dāng)k≠0時(shí),方程有兩個(gè)實(shí)數(shù)根;
(2)先由求根公式得到kx2+(3k+1)x+3=0(k≠0)的解為x1=-$\frac{1}{k}$,x2=-3,則二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為-$\frac{1}{k}$和-3,然后根據(jù)整數(shù)的整除性可確定整數(shù)k的值.
解答 (1)證明:當(dāng)k=0時(shí),方程變形為x+3=0,解得x=-3;
當(dāng)k≠0時(shí),△=(3k+1)2-4•k•3=(3k-1)2,
∵(3k-1)2≥0,
∴△≥0,
∴當(dāng)k≠0時(shí),方程有實(shí)數(shù)根,
∴無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)解:kx2+(3k+1)x+3=0(k≠0)
x=$\frac{-(3k+1)±(3k-1)}{2k}$,
x1=-$\frac{1}{k}$,x2=-3,
所以二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為-$\frac{1}{k}$和-3,
根據(jù)題意得-$\frac{1}{k}$為整數(shù),
所以整數(shù)k為±1.
點(diǎn)評(píng) 本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了拋物線與x軸的交點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 答對(duì)題數(shù)(道) | 12 | 13 | 14 | 15 |
| 人數(shù) | 4 | 18 | 16 | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≥2 | B. | x>2且x≠3 | C. | x>2 | D. | x≥2且x≠3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,1) | B. | (-3,4) | C. | (2,1) | D. | (1,2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 僅有①③ | B. | 僅有①② | C. | 僅有②③ | D. | ①②③ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com