【題目】如圖,在等邊
中,
分別是邊
上的點(diǎn),且
,
,點(diǎn)
與點(diǎn)
關(guān)于
對(duì)稱,連接
,
交
于
.
(1)連接
,則
之間的數(shù)量關(guān)系是 ;
(2)若
,求
的大小(用
的式子表示)
(2)用等式表示線段
和
之間的數(shù)量關(guān)系,并證明.
![]()
【答案】(1)
;(2)
(3)
.
【解析】分析: (1)連接
,
,易證
是等邊三角形,則
根據(jù)點(diǎn)
與點(diǎn)
關(guān)于
對(duì)稱,則
根據(jù)等量代換可知
;
(2)根據(jù)
,求出
.因?yàn)辄c(diǎn)
與點(diǎn)
關(guān)于
對(duì)稱,得到
,
.則
.
,
,
在以
為圓心,
為半徑的圓上.根據(jù)圓周角定理有
.
(3)
.理由如下:連接
,延長(zhǎng)
,
交于點(diǎn)
,證明
,
得到
.根據(jù)
,即可得到
.
(1)
;
(2)如圖:
![]()
∵
是等邊三角形,
∴
.
∵
,
∴
.
∵點(diǎn)
與點(diǎn)
關(guān)于
對(duì)稱,
∴
,
.
∴
.
由(1)知
.
∴
,
,
在以
為圓心,
為半徑的圓上.
∴
.
(3)
.理由如下:
連接
,延長(zhǎng)
,
交于點(diǎn)
,
∵
是等邊三角形,
∴
,
.
∵點(diǎn)
與點(diǎn)
關(guān)于
對(duì)稱,
∴
,
.
∴
.
∴
.
![]()
設(shè)
,
則
.
∴
.
∴
.
∴
.
由(2)知
.
∴
.
∴
,
.
四邊形
中,
.
∴
.
∴
是等邊三角形.
∴
,
.
∵
,
∴
.
在
與
中,
∴
.
∴
.
∵
,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉弓的過程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長(zhǎng).如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時(shí),有AD1=30cm,∠B1D1C1=120°.
(1)圖2中,弓臂兩端B1,C1的距離為_____cm.
(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長(zhǎng)為_____cm.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=
(x<0)的圖象經(jīng)過點(diǎn)A(﹣2,2),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))
(1)如圖1,當(dāng)拋物線l恰好經(jīng)過點(diǎn)P(1,﹣4)時(shí),l與x軸從左到右的交點(diǎn)為A、B,與y軸交于點(diǎn)C.
![]()
①求l的解析式,并寫出l的對(duì)稱軸及頂點(diǎn)坐標(biāo).
②在l上是否存在點(diǎn)D,使S△ABD=S△ABC , 若存在,請(qǐng)求出D點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
③點(diǎn)M是l上任意一點(diǎn),過點(diǎn)M做ME垂直y軸于點(diǎn)E,交直線BC于點(diǎn)D,過點(diǎn)D作x軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)M的坐標(biāo).
(2)設(shè)l與雙曲線y=
有個(gè)交點(diǎn)橫坐標(biāo)為x0,且滿足3≤x0≤5,通過l位置隨h變化的過程,直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=5,cos∠ABC=
,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖①,當(dāng)點(diǎn)B1在線段BA延長(zhǎng)線上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;
![]()
(2)如圖②,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1,求線段EF1長(zhǎng)度的最大值與最小值的差.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,菱形ABCD中,AB=5cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BC﹣CD﹣DA運(yùn)動(dòng)到點(diǎn)A停止,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)到點(diǎn)B停止,它們運(yùn)動(dòng)的速度相同,設(shè)點(diǎn)P出發(fā)xs時(shí),△BPQ的面積為ycm2 , 已知y與x之間的函數(shù)關(guān)系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請(qǐng)根據(jù)圖中的信息,解答下列問題:
![]()
(1)當(dāng)1<x<2時(shí),△BPQ的面積________(填“變”或“不變”);
(2)分別求出線段OM,曲線NK所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)當(dāng)x為何值時(shí),△BPQ的面積是5cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù)
(
)與反比例函數(shù)
(
)的圖象交于點(diǎn)A(﹣1,2),B(m,﹣1).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P(n,0)(n>0),使△ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一手機(jī)經(jīng)銷商計(jì)劃購(gòu)進(jìn)華為品牌
型、
型、
型三款手機(jī)共
部,每款手機(jī)至少要購(gòu)進(jìn)
部,且恰好用完購(gòu)機(jī)款61000元.設(shè)購(gòu)進(jìn)
型手機(jī)
部,
型手機(jī)
部.三款手機(jī)的進(jìn)價(jià)和預(yù)售價(jià)如下表:
手機(jī)型號(hào) |
|
|
|
進(jìn)價(jià)(單位:元/部) |
|
|
|
預(yù)售價(jià)(單位:元/部) |
|
|
|
(1)求出
與
之間的函數(shù)關(guān)系式;
(2)假設(shè)所購(gòu)進(jìn)手機(jī)全部售出,綜合考慮各種因素,該手機(jī)經(jīng)銷商在購(gòu)銷這批手機(jī)過程中需另外支出各種費(fèi)用共1500元.
①求出預(yù)估利潤(rùn)W(元)與x(部)之間的關(guān)系式;
(注;預(yù)估利潤(rùn)W=預(yù)售總額
購(gòu)機(jī)款
各種費(fèi)用)
②求出預(yù)估利潤(rùn)的最大值,并寫出此時(shí)購(gòu)進(jìn)三款手機(jī)各多少部.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com