【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線(xiàn)段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線(xiàn);
(2)若CF=4,DF=
,求⊙O的半徑r及sinB.
![]()
【答案】(1)證明見(jiàn)解析;(2)r=3,sinB=
.
【解析】試題分析:(1)連接OA、OD,如圖,根據(jù)垂徑定理得OD⊥BC,則∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,則OA⊥AB,然后根據(jù)切線(xiàn)的判定定理即可得到AB是⊙O切線(xiàn);
(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理建立方程,解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.
然后在Rt△AOB中利用勾股定理,得到AB的值,再根據(jù)三角函數(shù)定義求出sinB.
試題解析:(1)證明:連接OA、OD,如圖,∵點(diǎn)D為CE的下半圓弧的中點(diǎn),∴OD⊥BC,∴∠EOD=90°,∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切線(xiàn);
(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=
,在Rt△DOF中,
,即
,解得:r=3或r=1(舍去);∴半徑r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中,
,∴
,∴AB=4,OB=5,∴sinB=
=
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45
/
,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線(xiàn)
(x>0)上,點(diǎn)D在雙曲線(xiàn)
(x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(3)求點(diǎn)A的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=
,點(diǎn)O是AB邊上的動(dòng)點(diǎn),以O為圓心,OB為半徑的⊙O與邊BC的另一交點(diǎn)為D,過(guò)點(diǎn)D作AB的垂線(xiàn),交于點(diǎn)E,連結(jié)BE、AE.
(1)當(dāng)AE∥BC(如圖(1))時(shí),求⊙O的半徑;
(2)設(shè)BO=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)若以A為圓心的⊙A與⊙O有公共點(diǎn)D、E,當(dāng)恰好也過(guò)點(diǎn)C時(shí),求DE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門(mén)票,誰(shuí)都想去,最后商定通過(guò)轉(zhuǎn)盤(pán)游戲決定.游戲規(guī)則是:轉(zhuǎn)動(dòng)下面平均分成三個(gè)扇形且標(biāo)有不同顏色的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)連續(xù)轉(zhuǎn)動(dòng)兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線(xiàn)上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)
![]()
(1)轉(zhuǎn)盤(pán)連續(xù)轉(zhuǎn)動(dòng)兩次,指針?biāo)割伾灿袔追N情況?通過(guò)畫(huà)樹(shù)狀圖或列表法加以說(shuō)明;
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
云陽(yáng)縣多集合生態(tài)農(nóng)業(yè)有限公司在2018年種植玉米的平均畝產(chǎn)量為0. 75噸,該公司總結(jié)了種植玉米的經(jīng)驗(yàn),2019年該公司種植玉米的情況是:種植面積比2018年減少了10%、平均畝產(chǎn)量比2018年增加了0. 2噸,總產(chǎn)量比2018年增加了8. 4噸.
(1)求2018年該公司種植玉米的面積;
(2)若2019年該公司種植玉米的人數(shù)比2018年少了12人,人均種植面積比2018年增加了17%,求2019年該公司種植玉米的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線(xiàn)是一條拋物線(xiàn),在地面上落點(diǎn)為B,有人在直線(xiàn)AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無(wú)蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少________個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,BC=6,AB、AC的垂直平分線(xiàn)分別交邊BC于點(diǎn)M、N,若MN=2,則△AMN的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校圖書(shū)館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書(shū),每施工一個(gè)月,需付甲工程隊(duì)工程款16萬(wàn)元,付乙工程隊(duì)12萬(wàn)元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書(shū)測(cè)算,可有三種施工方案:
(1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;
(2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;
(3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。
你覺(jué)得哪一種施工方案最節(jié)省工程款,說(shuō)明理由。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com