【題目】如圖,矩形ABCD中,AB=2,AD=4,M點是BC的中點,A為圓心,AB為半徑的圓交AD于點E.點P在弧BE上運動,則PM+
DP的最小值為____________.
![]()
科目:初中數學 來源: 題型:
【題目】兩位同學在足球場上游戲,兩人的運動路線如圖1所示,其中AC=DB,小王從點A出發(fā)沿線段AB運動到點B,小林從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人同時開始運動,直到都停止運動時游戲結束,其間他們與點C的距離y與時間x(單位:秒)的對應關系如圖2所示,結合圖象分析,下列說法正確的是( )
![]()
A. 小王的運動路程比小林的長
B. 兩人分別在
秒和
秒的時刻相遇
C. 當小王運動到點D的時候,小林已經過了點D
D. 在
秒時,兩人的距離正好等于
的半徑
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據學習函數的經驗,探究函數y=x2+ax﹣4|x+b|+4(b<0)的圖象和性質:
(1)下表給出了部分x,y的取值;
x | L | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | L |
y | L | 3 | 0 | ﹣1 | 0 | 3 | 0 | ﹣1 | 0 | 3 | L |
由上表可知,a= ,b= ;
(2)用你喜歡的方式在坐標系中畫出函數y=x2+ax﹣4|x+b|+4的圖象;
(3)結合你所畫的函數圖象,寫出該函數的一條性質;
(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3個不同的實數解,請直接寫出m的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線l1:y=
x2+c,當其函數值y=1時,只有一個自變量x的值與其對應
(1)求c的值;
(2)將拋物線l1經過平移得到拋物線l2:y=
(x﹣p)2﹣1.
①若拋物線l2與x軸交于A,B兩點(A在B的左側),與y軸交于點C,記△ABC的外心為P,當﹣1≤p≤
時,求點P的縱坐標的取值范圍;
②當0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標相等,求p的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
![]()
(1)若∠DFC=40,求∠CBF的度數.
(2)求證: CD⊥DF .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中,
①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;
②求點G移動路線的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
![]()
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=
,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(
,1)在反比例函數
的圖象上.
![]()
(1)求反比例函數
的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=
S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數的圖象上,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,AC長為
,若將邊AC平移至A'C'處,此時A'坐標為(-4,2),分別連接A'B,C'O,反比例函數y=
的圖象與四邊形A'BOC'對角線A'O交于D點,連接BD,則當BD取得最小值時,k的值是______ .
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com