如圖,梯形ABCD中,∠DAB=∠ABC=90°,E點(diǎn)在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,則四邊形ABCE的面積為何?( 。
![]()
|
| A. | 24 | B. | 25 | C. | 26 | D. | 27 |
考點(diǎn):
直角梯形;三角形的面積。
分析:
首先連接AC,由梯形ABCD中,∠DAB=∠ABC=90°,AB=5,BC=4,AD=8,即可求得梯形ABCD與△ABC的面積,繼而可得△ACD的面積,又由DE:EC=1:4,則可求得△ACE的面積,則可求得四邊形ABCE的面積.
解答:
解:連接AC,
∵梯形ABCD中,∠DAB=∠ABC=90°,AB=5,BC=4,AD=8,
∴S梯形ABCD=
•(AD+BC)•AB=
=30,
S△ABC=
AB•BC=
×5×4=10,
∴S△ACD=30﹣10=20,
∵DE:EC=1:4,
∴S△ACE=20×
=16,
∴S四邊形ABCE=10+16=26.
故選C.
![]()
點(diǎn)評(píng):
此題考查了直角梯形的性質(zhì),直角三角形的性質(zhì)以及等高三角形的面積問題.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意數(shù)形結(jié)合思想的應(yīng)用,注意等高的三角形面積的比等于其對(duì)應(yīng)底的比.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
| 10 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com