如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個單位長度;
(2)△AOC與△BOD關(guān)于直線對稱,則對稱軸是 ;
(3)△AOC繞原點(diǎn)O順時針旋轉(zhuǎn)可以得到△DOB,則旋轉(zhuǎn)角度是 度,在此旋轉(zhuǎn)過程中,△AOC掃過的圖形的面積是 .
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,P是邊長為1的正方形ABCD對角線AC上一動點(diǎn)(P與A、C不重合),點(diǎn)E在射線BC上,且PE=PB. 設(shè)AP=x , △PBE的面積為y. 則
下列圖象中,能表示
與
的函數(shù)關(guān)系的圖象大致是
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點(diǎn)C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點(diǎn)
D.
(1)求證:∠CAD =∠CAB;
(2)已知拋物線
過A、B、C三點(diǎn),AB=10 ,tan∠CAD=
.
① 求拋物線的解析式;
② 判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
解:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是
A.
-
B.
-
C.π-
D.π-![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,將兩個完全相同的三角形紙片
和
重合放置,其中![]()
.
(1)操作發(fā)現(xiàn)
如圖2,固定
,使
繞點(diǎn)
順時針旋轉(zhuǎn).當(dāng)點(diǎn)
恰好落在
邊上時,填空:
圖1 圖2
① 線段
與
的位置關(guān)系是 ;
② 設(shè)
的面積為
,
的面積為
,則
與
的數(shù)量關(guān)系是 ,證明你的結(jié)論;
(2)猜想論證
當(dāng)
繞點(diǎn)
旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中
與
的數(shù)量關(guān)系仍然成立,并嘗試分別作出了
和
中BC,CE邊上的高,請你證明小明的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成
的形式;![]()
(2)求出該二次函數(shù)圖象的對稱軸和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時,y<0.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com