【題目】如圖Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點(diǎn),OA=6,OB=8,將△COD繞O點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,則MP的最大值( 。
![]()
A. 7 B. 8 C. 9 D. 10
【答案】C
【解析】取AB的中點(diǎn)S,連接MS、PS,
![]()
則PMMS+PS,
∵∠AOB=90°,OA=6,OB=8,
∴AB=10,
∵∠AOB=∠COD=90°,
∴∠COB=∠DOA,
∵△AOB∽△DOC,
∴OCOB=ODOA,
∴△COB∽△DOA,
∴∠OBC=∠OAD,
∴O、B.P、A共圓,
∴∠APB=∠AOB=90°,又S是AB的中點(diǎn),
∴PS=
AB=5,
∵M為OA的中點(diǎn),S是AB的中點(diǎn),
∴MS=
OB=4,
∴MP的最大值是4+5=9,
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工地調(diào)來(lái)144人參加挖土和運(yùn)土,已知3人挖出的土1人恰好能全部運(yùn)走.怎樣調(diào)配勞動(dòng)力才能使挖出來(lái)的土及時(shí)運(yùn)走且不窩工(停工等待).為解決此問(wèn)題,可設(shè)派x人挖土,其他人運(yùn)土.列方程為:①
=
;②144-x=
;③x+3x=144;
④
=3.上述所列方程中,正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形AB1C1D1的邊長(zhǎng)為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2,以AD2為一邊,做第二個(gè)菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3,以AD3為一邊做第三個(gè)菱形AB3C3D3,使∠B3=60°…則AD2=_____,依此類(lèi)推這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長(zhǎng)是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
①最大的負(fù)整數(shù)是-1; ②數(shù)軸上表示-3和3的點(diǎn)到原點(diǎn)的距離相等;③1. 32×104是精確到百分位; ④a+6一定比a大; ⑤(-2)4與一24結(jié)果相等.
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的 切線(xiàn),交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BE、AD并延長(zhǎng)AD交BE于點(diǎn)F,
(1)求證:BE是⊙O的切線(xiàn)
(2)若OB=9,sin∠ABC=
,求BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度數(shù).![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com