【題目】如圖,在平面直角坐標(biāo)系中,雙曲線
和直線
交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為
,
軸于點(diǎn)C,且
.
求雙曲線和直線的解析式;
求
的面積.
直接寫出不等式
的解集.
![]()
【答案】(1)雙曲線的解析式為:y=-
,直線的解析式為:y=-2x-4;(2)8;(3)-3<x<0或x>1.
【解析】
(1)先把A點(diǎn)坐標(biāo)代入
求出m,從而得到反比例函數(shù)解析式;再利用OC=6BC可設(shè)B點(diǎn)坐標(biāo)為(t,-6t)(t>0),然后把B(t,-6t)代入反比例函數(shù)解析式求出t,得到B點(diǎn)坐標(biāo)為(1,-6),再利用待定系數(shù)法求一次函數(shù)解析式;
(2)先確定直線y=-2x-4與x軸的交點(diǎn)D的坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOD+S△BOD進(jìn)行計算;
(3)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點(diǎn)A與B的橫坐標(biāo),以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.
(1)∵點(diǎn)A(-3,2)在雙曲線
上,
∴2=
,即m=-6,
∴雙曲線的解析式為:y=-
,
∵點(diǎn)B在雙曲線y=-
上,且OC=6BC,設(shè)點(diǎn)B的坐標(biāo)為(a,-6a),
∴-6a=-
,
解得:a=±1(負(fù)值舍去),
∴點(diǎn)B的坐標(biāo)為(1,-6),
∵直線y=kx+b過點(diǎn)A,B,
∴
,
解得:
,
∴直線的解析式為y=-2x-4;
(2)直線y=-2x-4交x軸于點(diǎn)D,如圖,
把y=0代入y=-2x-4得-2x-4=0,
解得x=-2,
則D點(diǎn)坐標(biāo)為(-2,0),
△AOB的面積=S△AOD+S△BOD
=
×2×2+
×2×6
=8.
(3)根據(jù)圖象得:不等式
>kx+b的解集為-3<x<0或x>1.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳天虹某商場從廠家批發(fā)電視機(jī)進(jìn)行零售,批發(fā)價格與零售價格如下表:
電視機(jī)型號 | 甲 | 乙 |
批發(fā)價(元/臺) | 1500 | 2500 |
零售價(元/臺) | 2025 | 3640 |
若商場購進(jìn)甲、乙兩種型號的電視機(jī)共50臺,用去9萬元.
(1)求商場購進(jìn)甲、乙型號的電視機(jī)各多少臺?
(2)迎“元旦”商場決定進(jìn)行優(yōu)惠促銷:以零售價的七五折銷售乙種型號電視機(jī),兩種電視機(jī)銷售完畢,商場共獲利8.5%,求甲種型號電視機(jī)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4張相同的卡片上分別寫有數(shù)字-1、-3、4、6,將卡片的背面朝上,并洗勻.
(1)從中任意抽取1張,抽到的數(shù)字是奇數(shù)的概率是 ;
(2)從中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)
中的
;再從余下的卡片中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)
中的
.利用畫樹狀圖或列表的方法,求這個一次函數(shù)的圖象經(jīng)過第一、二、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)
,在x軸上任取一點(diǎn)M,完成以下作圖步驟;
①連接AM.作線段AM的垂直平分線a.過點(diǎn)M作x軸的垂線b,記
的交點(diǎn)為P:(在答題卡畫示意圖)
②在x軸上多次改變點(diǎn)M的位置(至少三次),用①的方法得到相應(yīng)的點(diǎn)P,把這些點(diǎn)用平滑的曲線順次連接起來,得到曲線C.
(1)猜想曲線C是我們學(xué)過的那種曲線,請直接寫出你的猜想,
(2)求曲線C的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).
(1)當(dāng)a=1時,
①拋物線G的對稱軸為x= ;
②若在拋物線G上有兩點(diǎn)(2,y1),(m,y2),且y2>y1,則m的取值范圍是 ;
(2)拋物線G的對稱軸與x軸交于點(diǎn)M,點(diǎn)M與點(diǎn)A關(guān)于y軸對稱,將點(diǎn)M向右平移3個單位得到點(diǎn)B,若拋物線G與線段AB恰有一個公共點(diǎn),結(jié)合圖象,求a的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過直線上一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程.
已知:直線l及直線l上一點(diǎn)P.
![]()
求作:直線PQ,使得PQ⊥l.
作法:如圖,
![]()
①在直線l上取一點(diǎn)A(不與點(diǎn)P重合),分別以點(diǎn)P,A為圓心,AP長為半徑畫弧,兩弧在直線l的上方相交于點(diǎn)B;
②作射線AB,以點(diǎn)B為圓心,AP長為半徑畫弧,交AB的延長線于點(diǎn)Q;
③作直線PQ.
所以直線PQ就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接BP,
∵ = = =AP,
∴點(diǎn)A,P,Q在以點(diǎn)B為圓心,AP長為半徑的圓上.
∴∠APQ=90°( ).(填寫推理的依據(jù))
即PQ⊥l.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠MON=45°,點(diǎn)P在射線OM上,點(diǎn)A,B在射線ON上(點(diǎn)B與點(diǎn)O在點(diǎn)A的兩側(cè)),且AB=1,以點(diǎn)P為旋轉(zhuǎn)中心,將線段AB逆時針旋轉(zhuǎn)90°,得到線段CD(點(diǎn)C與點(diǎn)A對應(yīng),點(diǎn)D與點(diǎn)B對應(yīng)).
(1)如圖,若OA=1,OP
,依題意補(bǔ)全圖形;
(2)若OP
,當(dāng)線段AB在射線ON上運(yùn)動時,線段CD與射線OM有公共點(diǎn),求OA的取值范圍;
(3)一條線段上所有的點(diǎn)都在一個圓的圓內(nèi)或圓上,稱這個圓為這條線段的覆蓋圓.若OA=1,當(dāng)點(diǎn)P在射線OM上運(yùn)動時,以射線OM上一點(diǎn)Q為圓心作線段CD的覆蓋圓,直接寫出當(dāng)線段CD的覆蓋圓的直徑取得最小值時OP和OQ的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家銷售一款商品,進(jìn)價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費(fèi)5元,未來一個月
按30天計算
,這款商品將開展“每天降價1元”的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第x天
且x為整數(shù)
的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時,AP的長為 .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com