| A. | BF=EF | B. | DE=EF | C. | ∠EFC=45° | D. | ∠BEF=∠CBE |
分析 根據(jù)等腰三角形的三線合一得到BF=FC,根據(jù)直角三角形的性質(zhì)判斷A;根據(jù)直角三角形的性質(zhì)判斷B;根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)判斷C,根據(jù)直角三角形的性質(zhì)判斷D.
解答 解:∵AB=AC,AF⊥BC,
∴BF=FC,
∵BE⊥AC,
∴EF=$\frac{1}{2}$BC=BF,A不合題意;
∵DE=$\frac{1}{2}$AB,EF=$\frac{1}{2}$BC,不能證明DE=EF,B符合題意;
∵DE垂直平分AB,
∴EA=EB,又BE⊥AC,
∴∠BAC=45°,
∴∠C=67.5°,又FE=FC,
∴∠EFC=45°,C不合題意;
∵FE=FB,
∴∠BEF=∠CBE;
故選:B.
點評 本題考查的是線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)和直角三角形的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com