在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),直線y=kx-3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長的最小值為________.
|
分析:根據(jù)直線y=kx-3k+4必過點(diǎn)D(3,4),求出最短的弦CD是過點(diǎn)D且與該圓直徑垂直的弦,再求出OD的長,再根據(jù)以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),求出OB的長,再利用勾股定理求出BD,即可得出答案. 解答:解:∵直線y=kx-3k+4必過點(diǎn)D(3,4), ∴最短的弦CD是過點(diǎn)D且與該圓直徑垂直的弦, ∵點(diǎn)D的坐標(biāo)是(3,4), ∴OD=5, ∵以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0), ∴圓的半徑為13, ∴OB=13, ∴BD=12, ∴BC的長的最小值為24; 故答案為:24. 點(diǎn)評(píng):此題考查了一次函數(shù)的綜合,用到的知識(shí)點(diǎn)是垂徑定理、勾股定理、圓的有關(guān)性質(zhì),關(guān)鍵是求出BC最短時(shí)的位置.
|
|
一次函數(shù)綜合題. |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com