欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在校刊上的概率.

【答案】

【解析】

試題分析:(1)求出總的作文篇數(shù),即可得出九年級參賽作文篇數(shù)對應的圓心角的度數(shù),求出八年級的作文篇數(shù),補全條形統(tǒng)計圖即可;

(2)設四篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文,用畫樹狀法即可求得結果.

試題解析:(1)20÷20%=100,

九年級參賽作文篇數(shù)對應的圓心角=360°×=126°;

100﹣20﹣35=45,

補全條形統(tǒng)計圖如圖所示:

(2)假設4篇榮獲特等獎的作文分別為A、B、C、D,

其中A代表七年級獲獎的特等獎作文.

畫樹狀圖法:

共有12種可能的結果,七年級特等獎作文被選登在?系慕Y果有6種,

P(七年級特等獎作文被選登在校刊上)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】騰飛中學在教學樓前新建了一座騰飛雕塑(如圖11①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為30°,底部B點的俯角為45°,小華在五樓找到一點D,利用三角板測得A點的俯角為60°(如圖10②).若已知CD10米,請求出雕塑AB的高度.(結果精確到01米,參考數(shù)據=173

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌汽車公司銷售部為了制定下個月的銷售計劃,對 20 位銷售員本月的銷售量進行了 統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這 20 位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù) 分別是(單位:輛)(

A.18.4,16,16B.18.4,2016

C.19, 16,16D.19, 2016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直線m上擺放著三個正三角形:ABCHFG,DCE,已知BC=CE,F、G分別是BC、CE的中點,FMAC,GNDC設圖中三個平行四邊形的面積依次是S1、S2S3,若S1+S3=10,則S2=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,經過點C且與邊AB相切的動圓與CB,CA分別相交于點E,F,則線段EF長度的最小值是( 。

A.B.4.75C.5D.4.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,∠BAC=90°,AB=AC=2,點分別在上(點不與點重合),且45°,若是等腰三角形,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸相交于點,與軸相交于,拋物線經過兩點,與軸另一交點為

1)求拋物線的解析式;

2)如圖1,過點軸,交拋物線于另一點,點以每秒個單位長度的速度在線段上由點向點運動(點不與點和點重合),設運動時間為秒,過點軸交于點,作于點,交軸右側的拋物線與點,連接,當時,求的值;

3)如圖2,正方形,邊軸上,點與點重合,邊長個單位長度,將正方形沿射線方向,以每秒個單位長度的速度平移,時間為秒,在平移過程中,請寫出正方形的邊恰好與拋物線有兩個交點時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸相交于兩點,與軸相交于點,頂點為,直線軸相交于點

1)求拋物線的頂點坐標(用含的式子表示);

2的長是否與值有關,說明你的理由;

3)設,求的取值范圍;

4)以為斜邊,在直線的左下方作等腰直角三角形.,直接寫出關于的函數(shù)解析式及自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.

查看答案和解析>>

同步練習冊答案