欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2

(1)求C1和C2的解析式;

(2)如圖②,過(guò)點(diǎn)B作直線BE:y=x﹣1交C1于點(diǎn)E(﹣2,﹣),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);

(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)y=x2﹣3(﹣3≤x≤3),y=﹣x2+1(﹣3≤x≤3)(2)P1,0)、P2(﹣,0)(3)(),

【解析】解:(1)∵拋物線C1、C2都過(guò)點(diǎn)A(﹣3,0)、B(3,0),

∴設(shè)它們的解析式為:y=a(x﹣3)(x+3)。

∵拋物線C1還經(jīng)過(guò)D(0,﹣3),∴﹣3=a(0﹣3)(0+3),解得a=。

∴拋物線C1:y=(x﹣3)(x+3),即y=x2﹣3(﹣3≤x≤3)。

∵拋物線C2還經(jīng)過(guò)A(0,1),∴1=a(0﹣3)(0+3),a=﹣

∴拋物線C2:y=﹣(x﹣3)(x+3),即y=﹣x2+1(﹣3≤x≤3)。

(2)∵直線BE:y=x﹣1必過(guò)(0,﹣1),∴∠CBO=∠EBO(tan∠CBO=tan∠EBO=)。

∵由E點(diǎn)坐標(biāo)可知:tan∠AOE≠,即∠AOE≠∠CBO,

∴它們的補(bǔ)角∠EOB≠∠CBx。

若以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,只需考慮兩種情況:

①∠CBP1=∠EBO,且OB:BE=BP1:BC,

由已知和勾股定理,得OB=3,BE=,BC=

∴3:=BP1,

得:BP1=,OP1=OB﹣BP1=!郟1,0)

②∠P2BC=∠EBO,且BC:BP2=OB:BE,即:

:BP2=3:,得:BP2=,OP2=BP2﹣OB=!郟2(﹣,0).

綜上所述,符合條件的P點(diǎn)有:P1,0)、P2(﹣,0)。

(3)如圖,作直線l∥直線BE,

設(shè)直線l:y=x+b。

①當(dāng)直線l與拋物線C1只有一個(gè)交點(diǎn)時(shí):

x+b=x2﹣3,即:x2﹣x﹣(3b+9)=0。

由△=(-1)2+4(3b+9)=0。得

此時(shí),。

∴該交點(diǎn)Q2)。

過(guò)點(diǎn)Q2作Q2F⊥BE于點(diǎn)F

,則由BE:y=x﹣1可用相似得Q2F的斜率為-3,

設(shè)Q2F:y=-3x+m。將Q2)代入,可得!郠2F:y=-3x。

聯(lián)立BE和Q2F,解得!郌()。

∴Q2到直線 BE:y=x﹣1的距離Q2F:

②當(dāng)直線l與拋物線C2只有一個(gè)交點(diǎn)時(shí):x+b=﹣x2+1,即:x2+3x+9b﹣9=0。

由△=32+4(9b-9)=0。得

此時(shí),!嘣摻稽c(diǎn)Q1)。

同上方法可得Q1到直線 BE:y=x﹣1 的距離:。

∴符合條件的Q點(diǎn)為Q1)。

∴△EBQ的最大面積:

(1)已知A、B、C、D四點(diǎn)坐標(biāo),利用待定系數(shù)法即可確定兩函數(shù)的解析式。

(2)根據(jù)直線BE:y=x﹣1知,該直線必過(guò)(0,﹣1)點(diǎn),那么∠EBO=∠CBO,若以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,那么夾這組對(duì)應(yīng)角的對(duì)應(yīng)邊必成比例,先求出BC、BO、BE的長(zhǎng),然后分情況根據(jù)線段間的比例關(guān)系求出BP的長(zhǎng),進(jìn)而得到OP的長(zhǎng),即可確定P點(diǎn)坐標(biāo)。

(3)△EBQ中,BE長(zhǎng)為定值,若以BE為底,當(dāng)△EBQ的面積最大時(shí),Q到直線BE的距離最大;由于點(diǎn)Q可能在拋物線C1或C2上,因此兩種情況都要解一下,最后通過(guò)比較得到能使△EBQ面積最大的Q點(diǎn).首先作直線l∥BE,分別令直線l與拋物線C1、C2有且僅有一個(gè)交點(diǎn),那么符合條件的Q點(diǎn)必在這兩個(gè)交點(diǎn)中,先求出這兩個(gè)交點(diǎn)分別到直線BE的距離,距離大者符合條件,由此可得到Q點(diǎn)坐標(biāo)和△EBQ的面積最大值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng))我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過(guò)點(diǎn)B作直線BE:y=
1
3
x-1交C1于點(diǎn)E(-2,-
5
3
),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考真題 題型:解答題

我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2。
(1)求C1和C2的解析式;
(2)如圖②,過(guò)點(diǎn)B作直線BE:y=x﹣1交C1于點(diǎn)E(﹣2,﹣),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2

(1)求C1和C2的解析式;

(2)如圖②,過(guò)點(diǎn)B作直線BE:y=x﹣1交C1于點(diǎn)E(﹣2,﹣),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);

(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(湖南岳陽(yáng)卷)數(shù)學(xué)(帶解析) 題型:解答題

我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過(guò)點(diǎn)B作直線BE:y=x﹣1交C1于點(diǎn)E(﹣2,﹣),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過(guò)點(diǎn)B作直線BE:y=x-1交C1于點(diǎn)E(-2,-),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案