分析 (1)由一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出n1=km1+b、n2=km2+b,二者做差即可得出n1-n2=k(m1-m2),再根據(jù)n1-n2+$\sqrt{3}$(m1-m2)=0結(jié)合m1<m2即可求出k值;
(2)由m1+m2=3b、n1+n2=kb+4,即可得出3kb+2b=kb+4,用函數(shù)b的代數(shù)式表示出k值,根據(jù)b的取值范圍即可得出k<0,結(jié)合一次函數(shù)的性質(zhì)即可得出一次函數(shù)y=kx+b中y隨x的增大而減小,再根據(jù)m1<m2即可得出n1>n2.
解答 解:(1)∵點(diǎn)A(m1,n1),B(m2,n2)(m1<m2)在一次函數(shù)y=kx+b的圖象上,
∴n1=km1+b,n2=km2+b,
∴n1-n2=(km1+b)-(km2+b)=k(m1-m2),
∵n1-n2+$\sqrt{3}$(m1-m2)=0,
∴k(m1-m2)+$\sqrt{3}$(m1-m2)=0,
∴(k+$\sqrt{3}$)(m1-m2)=0,
∵m1<m2,
∴k=-$\sqrt{3}$;
(2)n1>n2,理由如下:
∵n1+n2=(km1+b)+(km2+b)=k(m1+m2)+2b=kb+4,m1+m2=3b,
∴3kb+2b=kb+4,
解得:k=$\frac{2-b}$.
∵b>2.
∴k=$\frac{2-b}$<0,
∴一次函數(shù)y=kx+b中y隨x的增大而減。
又∵m1<m2,
∴n1>n2.
點(diǎn)評 本題考查了一次函數(shù)的性質(zhì)以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)找出(k+$\sqrt{3}$)(m1-m2)=0;(2)根據(jù)b的取值范圍找出k<0.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com