如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB。
![]()
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形。
(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證。
(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可。
【解析】
分析:(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證。
(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可。
證明:(1)∵在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD。
∵AE=AB,∴∠ABE=∠AEB。
∴∠ABE=∠EAD。
(2)∵AD∥BC,∴∠ADB=∠DBE。
∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB。
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB。∴AB=AD。
又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四邊形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com