四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 A 點(diǎn),按順時針方向旋轉(zhuǎn) 90 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
![]()
考點(diǎn):
旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì).
專題:
證明題.
分析:
(1)根據(jù)正方形的性質(zhì)得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易證得△ADE≌△ABF;
(2)由于△ADE≌△ABF得∠BAF=∠DAE,則∠BAF+∠EBF=90°,即∠FAE=90°,根據(jù)旋轉(zhuǎn)的定義可得到△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時針方向旋轉(zhuǎn)90 度得到;
(3)先利用勾股定理可計算出AE=10,在根據(jù)△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時針方向旋轉(zhuǎn)90 度得到AE=AF,∠EAF=90°,然后根據(jù)直角三角形的面積公式計算即可.
解答:
(1)證明:∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是DCB的延長線上的點(diǎn),
∴∠ABF=90°,
在△ADE和△ABF中
,
∴△ADE≌△ABF(SAS);
(2)解:∵△ADE≌△ABF,
∴∠BAF=∠DAE,
而∠DAE+∠EBF=90°,
∴∠BAF+∠EBF=90°,即∠FAE=90°,
∴△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時針方向旋轉(zhuǎn)90 度得到;
故答案為A、90;
(3)解:∵BC=8,
∴AD=8,
在Rt△ADE中,DE=6,AD=8,
∴AE=
=10,
∵△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時針方向旋轉(zhuǎn)90 度得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面積=AE2=×100=50(平方單位).
點(diǎn)評:
本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了全等三角形的判定與性質(zhì)以及勾股定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:廣東省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊
AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.
(1)填空:如圖9,AC= ,BD= ;四邊形ABCD是 梯形.
(2)請寫出圖9中所有的相似三角形(不含全等三角形).
(3)如圖10,若以AB所在直線為
軸,過點(diǎn)A垂直于AB的直線為
軸建立如圖10的平面直角坐標(biāo)系,保持ΔABD不動,將ΔABC向
軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com