請(qǐng)解答下列問(wèn)題:
(1)點(diǎn)A(-1,2)關(guān)于直線x=1對(duì)稱(chēng)的點(diǎn)B的坐標(biāo)是______.
(2)將點(diǎn)B向上平移4個(gè)單位得到點(diǎn)C,請(qǐng)問(wèn):在x軸上是否存在一點(diǎn)P,使PA+PC的值最。咳舸嬖,求出P點(diǎn)的坐標(biāo).
解:(1)B(3,2)
(2)畫(huà)出圖形如下所示:

根據(jù)平移的知識(shí)可知點(diǎn)C的坐標(biāo)為:(3,6)
作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′,連接A′C,A′C與x軸的交點(diǎn)即為所求的點(diǎn)P,
則點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′(-1,-2),
設(shè)直線CA′的解析式為y=kx+b,
過(guò)點(diǎn)C(3,6)和A′(-1,-2),
則有:

,
解得:

,
所以得y=2x與x軸的交點(diǎn)就是點(diǎn)P(0,0).
即存在這樣的點(diǎn)P使PA+PC的值最小,P點(diǎn)的坐標(biāo)為(0,0).
分析:(1)易得兩點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)為1+[1-(-1)];
(2)根據(jù)題意畫(huà)出圖形,作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′,連接A′C,其與x軸的交點(diǎn)即為所求的點(diǎn)P.
點(diǎn)評(píng):本題考查軸對(duì)稱(chēng)-最短路線問(wèn)題,注意掌握兩點(diǎn)關(guān)于某條直線對(duì)稱(chēng),橫縱坐標(biāo)中有一個(gè)坐標(biāo)是相等的,另一坐標(biāo)為2×對(duì)稱(chēng)軸-已知點(diǎn)的坐標(biāo);凡是涉及最短距離的問(wèn)題,一般要考慮線段的性質(zhì)定理,結(jié)合本節(jié)所學(xué)軸對(duì)稱(chēng)變換來(lái)解決,多數(shù)情況要作點(diǎn)關(guān)于某直線的對(duì)稱(chēng)點(diǎn).