分析 延長AE和GC相交于點(diǎn)H,根據(jù)正方形的性質(zhì)可得AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,再根據(jù)同角的余角相等求出∠1=∠2,然后利用“邊角邊”證明△ADE和△CDG全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠5=∠4,再根據(jù)平角等于180°求出∠6=∠7,然后求出∠EHC=90°,再根據(jù)垂直的定義證明即可.
解答 證明:延長AE和GC相交于點(diǎn)H,![]()
∵在正方形ABCD與正方形DEFG中,AD=DC,DE=DG,
∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,
∴∠1=∠2=90°-∠3,
在△ADE與△CDG中,$\left\{\begin{array}{l}{AD=CD}\\{∠1=∠2}\\{DE=DG}\end{array}\right.$,
∴△ADE≌△CDG,
∴∠5=∠4,AE=CG,
又∵∠5+∠6=90°,
∴∠4+∠7=180°-∠DCE=180°-90°=90°,∠6=∠7,
又∵∠6+∠AEB=90°,∠AEB=∠CEH,
∴∠CEH+∠7=90°,
∴∠EHC=90°,
∴AE⊥GC;
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),垂直的定義,熟記性質(zhì)并確定出全等的三角形是解題的關(guān)鍵,利用阿拉伯?dāng)?shù)字表示角更形象直觀.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 等級(jí) | 單價(jià)(元/千克) | 銷售量(千克) |
| 一等 | 50 | 20 |
| 二等 | 45 | 40 |
| 三等 | 40 | 40 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com