分析 根據(jù)菱形的對角線互相垂直平分,點B關(guān)于AC的對稱點是點D,連接ED,EF+BF最小值=ED,然后解直角三角形即可求解.
解答
解:在?ABCD中,∵AB∥CD,
∴∠ACD=∠CAB,
∵AC平分∠DAB,
∴∠DAC=∠BAC,
∴∠DAC=∠DCA,
∴AD=CD,
∴四邊形ABCD是菱形,
∴AC與BD互相垂直平分,
∴點B、D關(guān)于AC對稱,
連接ED,則ED就是所求的EF+BF的最小值的線段,
∵E為AB的中點,∠DAB=60°,
∴DE⊥AB,
∴ED=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
∴EF+BF的最小值為3$\sqrt{3}$.
點評 本題考查的是軸對稱-最短路線問題,涉及到三角形中位線定理和解直角三角形,熟知“兩點之間,線段最短”是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{9}$或$\frac{4}{9}$ | B. | $\frac{1}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{1}{3}$或$\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com