分析 (1)求出CD,即可得出答案;
(2)求出OA、OE,根據(jù)勾股定理求出AE,根據(jù)垂徑定理求出AB=2AE,即可求出答案.
解答 解:(1)∵CE=1,ED=3,
∴CD=CE+DE=4,
∴⊙O的半徑為2;![]()
(2)∵直徑CD⊥AB,
∴AB=2AE,∠OEA=90°,
連接OA,則OA=OC=2,OE=OC-CE=2-1=1,
在Rt△OEA中,由勾股定理得:AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴AB=2AE=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了勾股定理,垂徑定理的應(yīng)用,能根據(jù)垂徑定理求出AB=2AE是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5個(gè) | B. | 4個(gè) | C. | 3個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | AB=AD,∠2=∠1 | B. | AB=AD,∠3=∠4 | C. | ∠2=∠1,∠3=∠4 | D. | ∠2=∠1,∠B=∠D |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com